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Introduction

General Approximation Theory Problem

@ We consider the following general problem®:
inf sup || — D(E(f))]|x (1)
D.Efek

@ For various different norms X, model classes K, and restrictions on D
and E we get a variety of problems:
o D restricted to a certain type (e.g. piecewise polynomials,
trigonometric polynomials, neural networks): approximation rates

LAlbert Cohen, Ronald DeVore, Guergana Petrova, and Przemyslaw Wojtaszczyk. “Optimal
stable nonlinear approximation”. In: Foundations of Computational Mathematics 22.3 (2022),
pp. 607-648.
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and E we get a variety of problems:

o D restricted to a certain type (e.g. piecewise polynomials,
trigonometric polynomials, neural networks): approximation rates

e D and E both linear: linear widths

e D linear and E arbitrary: Kolmogorov widths

e D arbitrary and E linear: Gelfand widths

o D arbitrary and E restricted linear: today

LAlbert Cohen, Ronald DeVore, Guergana Petrova, and Przemyslaw Wojtaszczyk. “Optimal
stable nonlinear approximation”. In: Foundations of Computational Mathematics 22.3 (2022),
pp. 607-648.

J. W. Siegel (TAMU) Fourier Sampling Numbers July 3, 2025 4/29



Introduction

Model Class Assumptions

o We will consider the case X = L,(2)
o QCRyorQ="T¢

2Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal
function”. In: IEEE Transactions on Information theory 39.3 (1993), pp. 930-945.

3Rahul Parhi and Robert D Nowak. “Banach space representer theorems for neural networks
and ridge splines”. In: Journal of Machine Learning Research 22.43 (2021), pp. 1-40.
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e QCRYorQ="T¢
@ Classical smoothness assumptions:
e f is in the unit ball of a Sobolev or Besov space, i.e.,

1 llBz(Lq()) < 1 or [IFllws(ry@) <1 (2)

® Need 1/g—1/p < s/d for compactness
@ Shallow neural network model classes:
e Barron's class?, Radon BV3, etc.
@ More general non-convex model classes
o Ext K={lc: C C Qis convex}.

2Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal
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Introduction

Besov Spaces*

@ The k-th order finite difference of a function f is defined by

Zfzo(—l)j(jf) f(x+jh) x,x+h,...,x+jheQ

Ajf(x) =
kf(x) otherwise

(3)

4Ronald A DeVore and Robert C Sharpley. “Besov spaces on domains in R?". In:
Transactions of the American Mathematical Society 335.2 (1993), pp. 843-864.
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Introduction

Besov Spaces*

@ The k-th order finite difference of a function f is defined by

ALF(x) = {g)f:o(—l)f(jf)f(xﬂh) XXt b xHhERQ o

otherwise

@ The k-th order L, modulus of continuity is defined by

wi(f,t)g == sup </Q\A’;f(x)|qu>1/q (4)

0<|h|<t

@ Given parameters 1 < g, r < oo and s > 0 we define the Besov norm
of a function f € L4(Q2) via

/iy f,t " dt 1/r
11l 85 (Lq() = HfIILq(Q)+</O <k(t)"> t) (5)

4Ronald A DeVore and Robert C Sharpley. “Besov spaces on domains in R?". In:
Transactions of the American Mathematical Society 335.2 (1993), pp. 843-864.
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Restrictions on Measurements

@ Point samples, i.e., \j(f) = f(x;) for some points x; € Q
e Sampling numbers
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Restrictions on Measurements

e Point samples, i.e., \j(f) = f(x;) for some points x; € Q
e Sampling numbers

@ General linear measurements, i.e., \; € X*
o Gelfand widths

@ Fourier measurements, i.e.,
Ni(f) = (&) = / e™&Xf (x) dx.
Q

o Models measurements made by MRI

@ Radon measurements, i.e.,

Ai(f) = R(f)(wi, b)) = / f(x)dx.

Qﬂ{w,—~x:b,—}

e Models measurements made by CT
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Introduction

Sampling Numbers of Besov spaces

o We'll consider K := {f : [|f][gs_(L,(n)) < 1}
o Recall: Need 1/g—1/p < s/d to ensure compactness in L,
@ Consider recovering f in L, from each of the four types of
measuments considered:
Point samples
o General linear functionals
e Fourier samples
o Radon samples

@ In each case, we want the corresponding sampling numbers:

(K3, = Jof sup [If = D(E()],.
Erest7ricted 4

o Non-linear regime: g < p
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Introduction

General Recovery Algorithm

o Given a set of measurements A = E(f), the radius of the smallest ball
containing the set®
{f e K: E(f)=A}, (9)
also called the Chebyshev ball, is the minimal reconstruction error
o The center of (or any point in) the Chebyshev ball is a good estimate

5Charles A Micchelli, Th J Rivlin, and Shmuel Winograd. “The optimal recovery of smooth
functions”. In: Numerische Mathematik 26 (1976), pp. 191-200, Joseph Frederick Traub and
Henryk Wozniakowski. “A general theory of optimal algorithms”. In: (1980), Borislav Bojanov.
“Optimal recovery of functions and integrals”. In: First European Congress of Mathematics
Invited Lectures. Springer. 1994, pp. 371-390, Peter Binev, Andrea Bonito, Ronald DeVore, and
Guergana Petrova. “Optimal learning”. In: Calcolo 61.1 (2024), p. 15.
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o Given a set of measurements A = E(f), the radius of the smallest ball
containing the set®
{f e K: E(f)=A}, (9)
also called the Chebyshev ball, is the minimal reconstruction error
o The center of (or any point in) the Chebyshev ball is a good estimate
@ In our case, we can easily find such an element by solving

arg EI(T;)EA 11l 85, (Lo(2))- (10)

@ Further, the convexity and symmetry of K7 implies that
sn(Kg)L, =~ sup{[|fllc, : f € Kg, E(f) =0} (11)

5Charles A Micchelli, Th J Rivlin, and Shmuel Winograd. “The optimal recovery of smooth
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Introduction

Point Samples

o Consider recovering f € K3 from point samples
e Need s > d/q to ensure that point samples are well-defined

@ Point sampling rates are®

Sf(KS)Lp = p—s/d+(1/a=1/p)+ (12)

e Uniform grid of points is quasi-optimal
o Rate deteriorates in the non-linear regime g < p

6Erich Novak and Hans Triebel. “Function spaces in Lipschitz domains and optimal rates of
convergence for sampling”. In: Constructive approximation 23 (2006), pp. 325—-350,
Jan Vybiral. “Sampling numbers and function spaces”. In: Journal of Complexity 23.4-6
(2007), pp. 773-792, Andrea Bonito, Ronald DeVore, Guergana Petrova, and
Jonathan W Siegel. “Convergence and error control of consistent PINNs for elliptic PDEs". In:
IMA Journal of Numerical Analysis (2025), draf008.
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Gelfand Widths

@ Suppose we allow general linear functionals
e Optimal recovery is controlled by the Gelfand widths’:
n—s/d+(1/a=1/p)+ 4> 2

G s _
WKL\ pserzvpe 1<g<n B

o When 1< g,p <2 we get O(nfs/d) even in the non-linear regime
e In this regime we need a complicated random set of measurements

"George G Lorentz, Manfred von Golitschek, and Yuly Makovoz. Constructive approximation:
advanced problems. Vol. 304. Citeseer, 1996.
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Introduction

Non-linear Approximation

@ Why do we care about the regime g < p?
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@ Suppose we consider BV(Q2) C BL (L1(R)) and

®={; Tge

for some open set C (with nice boundary)

o We have f € BV(Q)
o BV(Q)CL,ifp< 3%
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Non-linear Approximation

@ Why do we care about the regime g < p?
@ Suppose we consider BV(Q2) C BL (L1(R)) and

®={; Tge

for some open set C (with nice boundary)
o We have f € BV(Q)
o BV(Q)CL,if p< 5%
@ Let us approximate f from:
o Point samples, get error O(n~1/d+(1=1/p))
o General linear functionals, get error O(n~/9)
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Introduction

Non-linear Approximation

@ Notice that

{x: |f(x) = fa(x)| = 1/2}| < (2[|f = fall,)P
<c {n_P/d+P_1 point samples

n—p/d general linear functionals
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Non-linear Approximation

@ Notice that

[{x = 1F(x) = fa(x)[ = 1/2}] < (2[|f = fall,)P
< C{n_P/d+P_1 point samples (15)

n—p/d general linear functionals

o With point samples we recover the boundary/edges up to accuracy
O(n=*/9) (with p = 1)

o With general functionals we recover the boundary/edges up to
accuracy O(n=Y(4=1) (with p — d/(d — 1))
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Introduction

Non-linear Approximation

@ Notice that

[{x = 1F(x) = fa(x)[ = 1/2}] < (2[|f = fall,)P
< C{n_P/d+P_1 point samples (15)

n—p/d general linear functionals

o With point samples we recover the boundary/edges up to accuracy
O(n=*/9) (with p = 1)

o With general functionals we recover the boundary/edges up to
accuracy O(n=Y(4=1) (with p — d/(d — 1))

@ Non-linear approximation can recover edges to much higher accuracy!
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© Fourier Sampling Numbers
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Fourier Sampling Numbers

Compressive Sensing®

@ Recover a k-sparse vector x € CN from few measurements:

% = arg min |lylle, (16)

o A is the measurement matrix, b = Ax are the measurements

8Emmanuel J Candes and Terence Tao. “Decoding by linear programming”. In: IEEE
transactions on information theory 51.12 (2005), pp. 4203-4215.

9David L Donoho. “Compressed sensing”. In: IEEE Transactions on information theory 52.4
(2006), pp. 1289-1306, Emmanuel J Candes, Justin Romberg, and Terence Tao. “Robust
uncertainty principles: Exact signal reconstruction from highly incomplete frequency
information”. In: |[EEE Transactions on information theory 52.2 (2006), pp. 489-509.
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Fourier Sampling Numbers

Compressive Sensing®

@ Recover a k-sparse vector x € CN from few measurements:
% = arg min |lylle, (16)
o A is the measurement matrix, b = Ax are the measurements
e A satisfies the (s, §) restricted isometry property (RIP), i.e.,
(1 =0)lIxll2 < [|Ax[l2 < (1 + 0)]Ix[|2 (17)

for all s-sparse vectors

8Emmanuel J Candes and Terence Tao. “Decoding by linear programming”. In: IEEE
transactions on information theory 51.12 (2005), pp. 4203-4215.

9David L Donoho. “Compressed sensing”. In: IEEE Transactions on information theory 52.4
(2006), pp. 1289-1306, Emmanuel J Candes, Justin Romberg, and Terence Tao. “Robust
uncertainty principles: Exact signal reconstruction from highly incomplete frequency
information”. In: |[EEE Transactions on information theory 52.2 (2006), pp. 489-509.
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Null Space Property

@ A sensing matrix satisfying the (s, d)-RIP with 6 < 1/4 satisfies the
following Null Space Property!?:

C .
Ix]l2 < —||x|l1 if Ax=0. (18)
NG

0Albert Cohen, Wolfgang Dahmen, and Ronald DeVore. “Compressed sensing and best
k-term approximation”. In: Journal of the American mathematical society 22.1 (2009),
pp. 211-231, George G Lorentz, Manfred von Golitschek, and Yuly Makovoz. Constructive
approximation: advanced problems. Vol. 304. Citeseer, 1996.

1Emmanuel J Candes and Terence Tao. “Decoding by linear programming”. In: IEEE
transactions on information theory 51.12 (2005), pp. 4203—4215, Richard Baraniuk,
Mark Davenport, Ronald DeVore, and Michael Wakin. “A simple proof of the restricted isometry
property for random matrices”. In: Constructive approximation 28 (2008), pp. 253—-263.
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o There exist matrices satisfying an (s, d)-RIP with O(slog(N/s)) rows!!
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Null Space Property

@ A sensing matrix satisfying the (s, d)-RIP with 6 < 1/4 satisfies the
following Null Space Property!?:

C .
Ix]l2 < —||x|l1 if Ax=0. (18)
NG

o There exist matrices satisfying an (s, d)-RIP with O(slog(N/s)) rows!!
e This gives sharp bounds on the Gelfand widths

10Albert Cohen, Wolfgang Dahmen, and Ronald DeVore. “Compressed sensing and best
k-term approximation”. In: Journal of the American mathematical society 22.1 (2009),
pp. 211-231, George G Lorentz, Manfred von Golitschek, and Yuly Makovoz. Constructive
approximation: advanced problems. Vol. 304. Citeseer, 1996.

1Emmanuel J Candes and Terence Tao. “Decoding by linear programming”. In: |[EEE
transactions on information theory 51.12 (2005), pp. 4203—4215, Richard Baraniuk,
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Fourier CS Matrices

e Random Fourier matrices satisfy the RIP?

@ Randomly sampled bounded orthogonal systems satisfy the Null
Space Property!3:

o Let ¢1,...,¢, be an orthonormal system in L, such that ||¢||... < C.
o Let 1 < k < n indices be chosen randomly (gives a set |/x| = k). Then
with probability at least 1/2 we have

Z ai9i|| < p(log(w))®/? Z a;p; (19)

igh L, igh

where = /2 (log k), for all coefficients a;

2Emmanuel J Candes and Terence Tao. “Near-optimal signal recovery from random
projections: Universal encoding strategies?" In: |EEE transactions on information theory 52.12
(2006), pp. 5406-5425, Mark Rudelson and Roman Vershynin. “On sparse reconstruction from
Fourier and Gaussian measurements”. In: Communications on Pure and Applied Mathematics:
A Journal Issued by the Courant Institute of Mathematical Sciences 61.8 (2008), pp. 1025-1045.

13Qlivier Guédon, Shahar Mendelson, Alain Pajor, and Nicole Tomczak-Jaegermann.
“Majorizing measures and proportional subsets of bounded orthonormal systems”. In: (2008).
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Fourier Sampling Numbers

Continuous Compressed Sensing

@ Traditional compressed sensing applies to sparse, discrete signals and
discrete measurements

14Ben Adcock, Anders C Hansen, Clarice Poon, and Bogdan Roman. “Breaking the coherence
barrier: A new theory for compressed sensing”. In: Forum of mathematics, sigma. Vol. 5.
Cambridge University Press. 2017, e4, Yaakov Tsaig and David L Donoho. “Extensions of
compressed sensing”. In: Signal processing 86.3 (2006), pp. 549-571.
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Fourier Sampling Numbers

Continuous Compressed Sensing

@ Traditional compressed sensing applies to sparse, discrete signals and
discrete measurements
@ We're interested in continuous functions and continuous
measurements
e Some numerical analysis must be done

14Ben Adcock, Anders C Hansen, Clarice Poon, and Bogdan Roman. “Breaking the coherence
barrier: A new theory for compressed sensing”. In: Forum of mathematics, sigma. Vol. 5.
Cambridge University Press. 2017, e4, Yaakov Tsaig and David L Donoho. “Extensions of
compressed sensing”. In: Signal processing 86.3 (2006), pp. 549-571.
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Fourier Sampling Numbers

Continuous Compressed Sensing

@ Traditional compressed sensing applies to sparse, discrete signals and
discrete measurements

@ We're interested in continuous functions and continuous
measurements

e Some numerical analysis must be done

e Existing works'# make much stronger assumptions on the target
function than we need

14Ben Adcock, Anders C Hansen, Clarice Poon, and Bogdan Roman. “Breaking the coherence
barrier: A new theory for compressed sensing”. In: Forum of mathematics, sigma. Vol. 5.
Cambridge University Press. 2017, e4, Yaakov Tsaig and David L Donoho. “Extensions of
compressed sensing”. In: Signal processing 86.3 (2006), pp. 549-571.
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Fourier Sampling Numbers

Multiscale Decomposition

@ Recall, we want to find a set S of n frequencies such that
max{||f|[, : f € KS and f(k) =0 for all k € S}

is minimized

@ Let’s consider just thecase g=1and 1 < p <2

J. W. Siegel (TAMU) Fourier Sampling Numbers July 3, 2025

19/29



Fourier Sampling Numbers

Multiscale Decomposition

@ Recall, we want to find a set S of n frequencies such that
max{||f|[, : f € KS and f(k) =0 for all k € S}
is minimized
@ Let’s consider just thecase g=1and 1 < p <2

@ Multiscale decomposition of f:

f:if;

i=0
e Support of f; contained in S; := {k: |27 < Jk|oo < 2111}
o f(k) =0 implies fi(k) =0 .
o [Ifill, < C27%|Ifllgs (1) < C27°
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Fourier Sampling Numbers

Main Bounds

@ For each i, we now sample frequencies from S;, either
o All frequencies in S;

e Randomly sample k; > 1 frequencies in S;
@ None of the frequencies in S;

J. W. Siegel (TAMU) Fourier Sampling Numbers July 3, 2025 20/29



Fourier Sampling Numbers

Main Bounds

@ For each i, we now sample frequencies from S;, either
o All frequencies in S;

e Randomly sample k; > 1 frequencies in S;
@ None of the frequencies in S;

@ The frequencies in S; form a bounded orthogonal system, so that if f;
vanishes at these frequencies we get an error of

o ||fillL, = 0 if all frequencies are sampled
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Fourier Sampling Numbers

Main Bounds

@ For each i, we now sample frequencies from S;, either
o All frequencies in S;

e Randomly sample k; > 1 frequencies in S;
@ None of the frequencies in S;
@ The frequencies in S; form a bounded orthogonal system, so that if f;
vanishes at these frequencies we get an error of

o ||fillL, = 0 if all frequencies are sampled
°

16l < IEIPHIANT P < Cluslog(i)®/ 212~ 2/P |||,

. )
< CuPO VP og )P t-1/Pp
if k; frequencies are sampled, where p; = %(Iog ki)
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Fourier Sampling Numbers

Main Bounds

@ For each i, we now sample frequencies from S;, either
o All frequencies in S;

e Randomly sample k; > 1 frequencies in S;
@ None of the frequencies in S;
@ The frequencies in S; form a bounded orthogonal system, so that if f;
vanishes at these frequencies we get an error of

o ||fillL, = 0 if all frequencies are sampled
°

16l < IEIPHIANT P < Cluslog(i)®/ 212~ 2/P |||,

) )
< CufO TP log () S11/P)2

if k; frequencies are sampled, where p; = 2/d(log ki)

o ||fille, < C2EA=L/P)||f|,, < C27i(s+d(1=1/P)) if no frequencies are
taken
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Optimal sampling strategy

@ Based on the previous estimates, we optimize the sampling strategy
as follows:

e Choose all frequencies up to level iy
o Above ip select k; = Diodp—a(i—i) frequencies until k; < 2
@ Here0 < avand (d +a)(1—-1/p) <s
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Optimal sampling strategy

@ Based on the previous estimates, we optimize the sampling strategy

as follows:

e Choose all frequencies up to level iy
o Above ip select k; = Diodp—a(i—i) frequencies until k; < 2
@ Here0 < avand (d +a)(1—-1/p) <s

@ Putting together the previous bounds, we get

o0
HfHLp < Z HfiHLp < C2—iosl-(gl—1/P) |0g(io)5(1_1/P)
=il

@ Total number of Fourier measurements: n < €209 so

SE(Kls)Lp < Cn—*/91og(n)*=1/P) log(log(n))>(—1/P).
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Numerical Experiments

© Numerical Experiments
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Ground Truth
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Numerical Experiments

Fourier Sum (289 lowest frequencies)

. B
fF *» »
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Numerical Experiments

Smoothed Fourier Sum (289 lowest frequencies)
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Numerical Experiments

BV-norm Minimizer (289 lowest frequencies)
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Numerical Experiments

BV-norm Minimizer (289 hierarchically random)
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Conclusion

@ Conclusion
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Conclusion

Conclusion

@ Non-linear compressive sampling is possible from Fourier
measurements
@ Open Problems:

e What about Radon measurements?

o What about noisy measurements?

o What about other (even non-linear) measurements such as the
magnitude of the Fourier coefficients, etc.

Happy Birthday Albert!
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