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Introduction

General Approximation Theory Problem

We consider the following general problem1:

inf
D,E

sup
f ∈K

∥f − D(E (f ))∥X (1)

For various different norms X , model classes K , and restrictions on D
and E we get a variety of problems:

D restricted to a certain type (e.g. piecewise polynomials,
trigonometric polynomials, neural networks): approximation rates

D and E both linear: linear widths
D linear and E arbitrary: Kolmogorov widths
D arbitrary and E linear: Gelfand widths
D arbitrary and E restricted linear: today

1Albert Cohen, Ronald DeVore, Guergana Petrova, and Przemyslaw Wojtaszczyk. “Optimal
stable nonlinear approximation”. In: Foundations of Computational Mathematics 22.3 (2022),
pp. 607–648.
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Introduction

Model Class Assumptions

We will consider the case X = Lp(Ω)

Ω ⊂ Rd or Ω = Td

Classical smoothness assumptions:

f is in the unit ball of a Sobolev or Besov space, i.e.,

∥f ∥Bs
r (Lq(Ω)) ≤ 1 or ∥f ∥W s (Lq(Ω)) ≤ 1 (2)

Need 1/q − 1/p < s/d for compactness

Shallow neural network model classes:

Barron’s class2, Radon BV3, etc.

More general non-convex model classes

Ex: K = {1C : C ⊂ Ω is convex}.

2Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal
function”. In: IEEE Transactions on Information theory 39.3 (1993), pp. 930–945.

3Rahul Parhi and Robert D Nowak. “Banach space representer theorems for neural networks
and ridge splines”. In: Journal of Machine Learning Research 22.43 (2021), pp. 1–40.
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Introduction

Besov Spaces4

The k-th order finite difference of a function f is defined by

∆h
k f (x) =

{∑k
j=0(−1)j

(k
j

)
f (x + jh) x , x + h, ..., x + jh ∈ Ω

0 otherwise
(3)

The k-th order Lq modulus of continuity is defined by

ωk(f , t)q := sup
0<|h|≤t

(∫
Ω
|∆h

k f (x)|qdx
)1/q

(4)

Given parameters 1 ≤ q, r ≤ ∞ and s > 0 we define the Besov norm
of a function f ∈ Lq(Ω) via

∥f ∥Bs
r (Lq(Ω)) := ∥f ∥Lq(Ω) +

(∫ ∞

0

(
ωk(f , t)q

ts

)r dt

t

)1/r

(5)

4Ronald A DeVore and Robert C Sharpley. “Besov spaces on domains in Rd”. In:
Transactions of the American Mathematical Society 335.2 (1993), pp. 843–864.
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Introduction

Restrictions on Measurements

Point samples, i.e., λi (f ) = f (xi ) for some points xi ∈ Ω
Sampling numbers

General linear measurements, i.e., λi ∈ X ∗

Gelfand widths

Fourier measurements, i.e.,

λi (f ) = f̂ (ξi ) =

∫
Ω
e2πiξi ·x f (x)dx . (6)

Models measurements made by MRI

Radon measurements, i.e.,

λi (f ) = R(f )(ωi , bi ) =

∫
Ω∩{ωi ·x=bi}

f (x)dx . (7)

Models measurements made by CT
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Introduction

Sampling Numbers of Besov spaces

We’ll consider K s
q := {f : ∥f ∥Bs

∞(Lq(Ω)) ≤ 1}
Recall: Need 1/q − 1/p < s/d to ensure compactness in Lp

Consider recovering f in Lp from each of the four types of
measuments considered:

Point samples
General linear functionals
Fourier samples
Radon samples

In each case, we want the corresponding sampling numbers:

sn(K
s
q )Lp := inf

D,E
E restricted

sup
f ∈K s

q

∥f − D(E (f ))∥Lp . (8)

Non-linear regime: q < p
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Introduction

General Recovery Algorithm

Given a set of measurements Λ = E (f ), the radius of the smallest ball
containing the set5

{f ∈ K : E (f ) = Λ}, (9)

also called the Chebyshev ball, is the minimal reconstruction error
The center of (or any point in) the Chebyshev ball is a good estimate

In our case, we can easily find such an element by solving

arg min
E(f )=Λ

∥f ∥Bs
∞(Lq(Ω)). (10)

Further, the convexity and symmetry of K s
q implies that

sn(K
s
q )Lp ≂ sup{∥f ∥Lp : f ∈ K s

q , E (f ) = 0} (11)

5Charles A Micchelli, Th J Rivlin, and Shmuel Winograd. “The optimal recovery of smooth
functions”. In: Numerische Mathematik 26 (1976), pp. 191–200, Joseph Frederick Traub and
Henryk Woźniakowski. “A general theory of optimal algorithms”. In: (1980), Borislav Bojanov.
“Optimal recovery of functions and integrals”. In: First European Congress of Mathematics
Invited Lectures. Springer. 1994, pp. 371–390, Peter Binev, Andrea Bonito, Ronald DeVore, and
Guergana Petrova. “Optimal learning”. In: Calcolo 61.1 (2024), p. 15.
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Introduction

Point Samples

Consider recovering f ∈ K s
q from point samples

Need s > d/q to ensure that point samples are well-defined

Point sampling rates are6

sPn (K
s
q )Lp ≂ n−s/d+(1/q−1/p)+ (12)

Uniform grid of points is quasi-optimal
Rate deteriorates in the non-linear regime q < p

6Erich Novak and Hans Triebel. “Function spaces in Lipschitz domains and optimal rates of
convergence for sampling”. In: Constructive approximation 23 (2006), pp. 325–350,
Jan Vyb́ıral. “Sampling numbers and function spaces”. In: Journal of Complexity 23.4-6
(2007), pp. 773–792, Andrea Bonito, Ronald DeVore, Guergana Petrova, and
Jonathan W Siegel. “Convergence and error control of consistent PINNs for elliptic PDEs”. In:
IMA Journal of Numerical Analysis (2025), draf008.

J. W. Siegel (TAMU) Fourier Sampling Numbers July 3, 2025 10 / 29



Introduction

Gelfand Widths

Suppose we allow general linear functionals

Optimal recovery is controlled by the Gelfand widths7:

sGn (K s
q )Lp ≂

{
n−s/d+(1/q−1/p)+ q ≥ 2

n−s/d+(1/2−1/p)+ 1 ≤ q < 2.
(13)

When 1 ≤ q, p ≤ 2 we get O(n−s/d) even in the non-linear regime
In this regime we need a complicated random set of measurements

7George G Lorentz, Manfred von Golitschek, and Yuly Makovoz. Constructive approximation:
advanced problems. Vol. 304. Citeseer, 1996.

J. W. Siegel (TAMU) Fourier Sampling Numbers July 3, 2025 11 / 29



Introduction

Non-linear Approximation

Why do we care about the regime q < p?

Suppose we consider BV (Ω) ⊂ B1
∞(L1(Ω)) and

f (x) =

{
1 x ∈ C

0 x /∈ C
(14)

for some open set C (with nice boundary)

We have f ∈ BV (Ω)
BV (Ω) ⊂ Lp if p < d

d−1

Let us approximate f from:

Point samples, get error O(n−1/d+(1−1/p))
General linear functionals, get error O(n−1/d)

J. W. Siegel (TAMU) Fourier Sampling Numbers July 3, 2025 12 / 29
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Introduction

Non-linear Approximation

Notice that

|{x : |f (x)− fn(x)| ≥ 1/2}| ≤ (2∥f − fn∥Lp)p

≤ C

{
n−p/d+p−1 point samples

n−p/d general linear functionals

(15)

With point samples we recover the boundary/edges up to accuracy
O(n−1/d) (with p = 1)
With general functionals we recover the boundary/edges up to
accuracy O(n−1/(d−1)) (with p → d/(d − 1))

Non-linear approximation can recover edges to much higher accuracy!
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Fourier Sampling Numbers

Compressive Sensing9

Recover a k-sparse vector x ∈ CN from few measurements:

x̂ = arg min
Ay=b

∥y∥ℓ1 (16)

A is the measurement matrix, b = Ax are the measurements

A satisfies the (s, δ) restricted isometry property (RIP)8, i.e.,

(1− δ)∥x∥2 ≤ ∥Ax∥2 ≤ (1 + δ)∥x∥2 (17)

for all s-sparse vectors

8Emmanuel J Candes and Terence Tao. “Decoding by linear programming”. In: IEEE
transactions on information theory 51.12 (2005), pp. 4203–4215.

9David L Donoho. “Compressed sensing”. In: IEEE Transactions on information theory 52.4
(2006), pp. 1289–1306, Emmanuel J Candès, Justin Romberg, and Terence Tao. “Robust
uncertainty principles: Exact signal reconstruction from highly incomplete frequency
information”. In: IEEE Transactions on information theory 52.2 (2006), pp. 489–509.
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Fourier Sampling Numbers

Null Space Property

A sensing matrix satisfying the (s, δ)-RIP with δ ≤ 1/4 satisfies the
following Null Space Property10:

∥x∥2 ≤
C√
s
∥x∥1 if Ax = 0. (18)

There exist matrices satisfying an (s, δ)-RIP with O(s log(N/s)) rows11

This gives sharp bounds on the Gelfand widths

10Albert Cohen, Wolfgang Dahmen, and Ronald DeVore. “Compressed sensing and best
k-term approximation”. In: Journal of the American mathematical society 22.1 (2009),
pp. 211–231, George G Lorentz, Manfred von Golitschek, and Yuly Makovoz. Constructive
approximation: advanced problems. Vol. 304. Citeseer, 1996.

11Emmanuel J Candes and Terence Tao. “Decoding by linear programming”. In: IEEE
transactions on information theory 51.12 (2005), pp. 4203–4215, Richard Baraniuk,
Mark Davenport, Ronald DeVore, and Michael Wakin. “A simple proof of the restricted isometry
property for random matrices”. In: Constructive approximation 28 (2008), pp. 253–263.
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Fourier Sampling Numbers

Fourier CS Matrices

Random Fourier matrices satisfy the RIP12

Randomly sampled bounded orthogonal systems satisfy the Null
Space Property13:

Let ϕ1, ..., ϕn be an orthonormal system in L2 such that ∥ϕi∥L∞ ≤ C .
Let 1 < k < n indices be chosen randomly (gives a set |Ik | = k). Then
with probability at least 1/2 we have∥∥∥∥∥∥

∑
i /∈Ik

aiϕi

∥∥∥∥∥∥
L2

≲ µ(log(µ))5/2

∥∥∥∥∥∥
∑
i /∈Ik

aiϕi

∥∥∥∥∥∥
L1

(19)

where µ =
√

n
k (log k), for all coefficients ai

12Emmanuel J Candes and Terence Tao. “Near-optimal signal recovery from random
projections: Universal encoding strategies?” In: IEEE transactions on information theory 52.12
(2006), pp. 5406–5425, Mark Rudelson and Roman Vershynin. “On sparse reconstruction from
Fourier and Gaussian measurements”. In: Communications on Pure and Applied Mathematics:
A Journal Issued by the Courant Institute of Mathematical Sciences 61.8 (2008), pp. 1025–1045.

13Olivier Guédon, Shahar Mendelson, Alain Pajor, and Nicole Tomczak-Jaegermann.
“Majorizing measures and proportional subsets of bounded orthonormal systems”. In: (2008).
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Fourier Sampling Numbers

Continuous Compressed Sensing

Traditional compressed sensing applies to sparse, discrete signals and
discrete measurements

We’re interested in continuous functions and continuous
measurements

Some numerical analysis must be done

Existing works14 make much stronger assumptions on the target
function than we need

14Ben Adcock, Anders C Hansen, Clarice Poon, and Bogdan Roman. “Breaking the coherence
barrier: A new theory for compressed sensing”. In: Forum of mathematics, sigma. Vol. 5.
Cambridge University Press. 2017, e4, Yaakov Tsaig and David L Donoho. “Extensions of
compressed sensing”. In: Signal processing 86.3 (2006), pp. 549–571.
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Fourier Sampling Numbers

Multiscale Decomposition

Recall, we want to find a set S of n frequencies such that

max{∥f ∥Lp : f ∈ K s
q and f̂ (k) = 0 for all k ∈ S} (20)

is minimized

Let’s consider just the case q = 1 and 1 ≤ p ≤ 2

Multiscale decomposition of f :

f =
∞∑
i=0

fi (21)

Support of f̂i contained in Si := {k : ⌊2i−1⌋ ≤ |k|∞ ≤ 2i+1}
f̂ (k) = 0 implies f̂i (k) = 0
∥fi∥L1 ≤ C2−is∥f ∥Bs

∞(L1) ≤ C2−is
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Fourier Sampling Numbers

Main Bounds

For each i , we now sample frequencies from Si , either

All frequencies in Si
Randomly sample ki > 1 frequencies in Si
None of the frequencies in Si

The frequencies in Si form a bounded orthogonal system, so that if fi
vanishes at these frequencies we get an error of

∥fi∥Lp = 0 if all frequencies are sampled

∥fi∥Lp ≤ ∥fi∥2/p−1
L1

∥fi∥2−2/p
L2

≤ C [µi log(µi )
5/2]2−2/p∥fi∥L1

≤ Cµ
2(1−1/p)
i log(µi )

5(1−1/p)2−is
(22)

if ki frequencies are sampled, where µi =
√

2id

ki
(log ki )

∥fi∥Lp ≤ C2id(1−1/p)∥fi∥L1 ≤ C2−i(s+d(1−1/p)) if no frequencies are
taken
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Fourier Sampling Numbers

Optimal sampling strategy

Based on the previous estimates, we optimize the sampling strategy
as follows:

Choose all frequencies up to level i0
Above i0 select ki = 2i0d2−α(i−i0) frequencies until ki < 2

Here 0 < α and (d + α)(1− 1/p) < s

Putting together the previous bounds, we get

∥f ∥Lp ≤
∞∑
i=1

∥fi∥Lp ≤ C2−i0s i
(1−1/p)
0 log(i0)

5(1−1/p) (23)

Total number of Fourier measurements: n ≤ C2i0d , so

sGn (K s
1 )Lp ≤ Cn−s/d log(n)(1−1/p) log(log(n))5(1−1/p). (24)
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Numerical Experiments

Ground Truth
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Numerical Experiments

Fourier Sum (289 lowest frequencies)
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Numerical Experiments

Smoothed Fourier Sum (289 lowest frequencies)
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Numerical Experiments

BV -norm Minimizer (289 lowest frequencies)

J. W. Siegel (TAMU) Fourier Sampling Numbers July 3, 2025 26 / 29



Numerical Experiments

BV -norm Minimizer (289 hierarchically random)
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Conclusion

Conclusion

Non-linear compressive sampling is possible from Fourier
measurements

Open Problems:

What about Radon measurements?
What about noisy measurements?
What about other (even non-linear) measurements such as the
magnitude of the Fourier coefficients, etc.

Happy Birthday Albert!
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