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Parameter-dependent PDEs: Find v = u(a) € V such that P(a;u) =0, a € A
Elliptic model problem: w € V = H§ (D), D C R?, such that

-V -(aVu)=finD, u=0ondD

» Model order reduction:

efficient approximation
of a — u(a)

» Uncertainty quantification:
probability measure on A modelling uncertainty in a,

extract information on distribution of u(a)




Coefficient parametrizations: for y € Y, find u(y) € V = Hj(D) such that

/ a(y)Vu(y) - Vodz = / fvde Yv eV
D D
> Piecewise constant model case: with partition {D;} of D, for y € Y = [-1,1]7,

P
a(y) =1 +02inDw 6 € (0,1)
i=1
> Affine parametrization with y € Y = [—1, 1]V,

aly) =a+y ¢, @ € L7(D)
j=1

such that (uniform ellipticity): 0 <r < a(y) < R<ooin D forally €Y.

» Lognormal coefficients: with Y = RY,

a(y) =exp(D_wiws)s v ~ N (0 1), v € (D)

JEN

Aim: efficient approximations of Y 3 y — u(y) € V = H{ (D)

A. Cohen and R. DeVore, Approximation of high-dimensional parametric PDEs, Acta Numerica, 2015.



Separation of variables

Rank-n expansions of parameter-dependent solution u,

uy) mun(y) =D vidi(y), v €V, ¢ Y R
j=1

> Reduced basis methods: solution snapshots v; := u(y?), with ¢;(y) determined
implicitly by Galerkin projection

» Approximation in L= (Y, V): Kolmogorov n-widths of u(Y) C V,

dn(u(Y)),, = Jnf - sup min|lu(y) - vflv
dim (Vi) =n

» Controlling errors in L*°(Y, V') problematic for high-dimensional Y’



» Approximation in L2(Y,V, 11), p probability measure: Hilbert-Schmidt
decomposition / SVD,

u= Zaj 0; @ ¢,  {0;}, {d;} orthonormal,
j=1

best approximation by truncation, where

/Za; < dp(u(Y))y.

» Upper bounds for o; by prescribing (Z;]', e.g. product orthonormal polynomial
expansions in L2(Y,V,u): with T ={1,...,P} or T =N,

waz,y)~ Y w(@ Lo(y),  Lu(y) =[] Lv. ),

veACNE ieT

then o; < Hu,,;; v with decreasing rearrangement ||u,,; v



Piecewise constant a on partition {D;}, with @ := 1:

P
a(y):1+zyi¢i» Vi :=0Xp,, 0<1.
=1

Ds¢

Dy
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red: ordered norms ||u,||v of Legendre coefficients in u(y) = ZuVLV(y),

blue: singular values o; in SVD u(y) = Zaﬂ}j bi(y)
J



Upper bounds for Kolmogorov widths (B., Cohen '17):

recombining linearly dependent terms in Taylor polynomial expansions in y

» Trivial: dn(u(Y)) < exp(f|ln9|n71/P)

» For piecewise constant parameters: when Zle Y; = 0a,

dn(u(Y)) < exp(—|In@ln~/F=1)

» Using further spatial symmetries:

Ds

Dy

D

D,

P = 4 with regular 2 x 2 checkerboard. Then for any
fev,

dn, (u(Y))V < Cexp(— |11180| n).

(~ Autio, Hannukainen '25)

M. Bachmayr and A. Cohen, Kolmogorov widths and low-rank approximations of parametric elliptic

PDEs, Math Comp, 2017



Affinely parametrized linear elliptic PDEs

Parametric diffusion problem: for y € Y = [~1,1]", find u(y) € V = Hg (D) such that

/ a(y)Vu(y) - Vodz = (f,v), Yv e,

where a(y) =a+ Yy, a; € L7(D)

j=1

Uniform ellipticity assumption:
0<r<alyy)<R<oo, inD,forallyeY.
Here: for an r > 0,
Sl <a—r. (UEA)

jz1

Objective: Approximate u in L°°(Y, V) or L*(Y,V, ), with u uniform measure on Y. J




F:={v e Ny: v has finitely many nonzero entries}, |v|:= Zl/j, vl= H ;!
jz1 j=1

Taylor expansion: u = Z t,y”  with y” = Hy;’ and t, = 8" 0 eV
vEF j>1
Legendre expansion:

- L, ith orth | '{L —TTrL.. } fL2(Y,V,
U Zu,, (y) with orthonormal basis 4 L. (y) H v; (Y5) ver © Y.V, pn)
vEF 7>1
Theorem (Cohen, DeVore, Schwab '11).

Assume that (UEA) holds and illzee)j=1 € £P(N) for a p € (0,1), then
(Itwllv)ver and (JJuy||v)ver belong to £7(F).

Best n-term approximation: Take At ,, AL, C F corresponding to n largest
coefficients,

sup ) = X2 tort| <on L fus 3w
Yy

vEAT p VEAL

L2(U,V,u) —

A. Cohen, R. DeVore, and Ch. Schwab, Analytic regularity and polynomial approximation of parametric
and stochastic elliptic PDE'’s, Analysis and Applications, 2011.



Basic idea: improved results for 1; with spatial localization, still with basic assumption

Syl <a-—r. (UEA)

jz1

Theorem (B., Cohen, Migliorati '17).
Let (UEA) hold and with p; > 1, j € N, let

ij|¢j| <a—s forsomes>0. (UEA¥*)
i>1
Then .
Sl <oo SO (TTCw+1) ol
vEF veEF j>1

Corollary. Let 0 < p < 2 and assume that for ¢ = ¢(p) := ;fpp, there exists a
sequence p = (p;);>1 with p; > 1 satisfying (UEA*) and (pjfl)j>1 € ¢?(N). Then
(Ht"”")ue]—' and (||u,,\|v)ue}_ belong to ¢P(F).

M. Bachmayr, A. Cohen, and G. Migliorati, Sparse polynomial approximation of parametric elliptic
PDEs. Part I: affine coefficients, ESAIM M2AN, 2017



Wavelet-type parametrization

Yy = (Ye,m)e,m With ye.m ~U(—=1,1) i.id,, and a / \ [\

with affine parameterization,

a(y) = ao + Z Ye,mWPe,m,

Zm

where sup Z|1/Je,m(x)| <27 forall £> 0
zeD ™
~» choose weights with pg ., =~ 2°¢ with 8 < a

Convergence of product Legendre expansions

Take A,, C F as indices of n largest ||u, ||y in the expansion v =3 - u,L,.

Then
u— Z uy L,
vEAy

_ e
<n’* foranys<g

L2(Y,V,u)



Lognormal coefficients: a(y) = exp <Z y_yz%-), iid. y; ~N(0,1), ¥; € L>=(D)

JEN
» product Hermite polynomial expansion u(y) = Z uH,(y) = Z uy, H,
veF vEACF
where u,, € V, H,( H H,, (y;) with univariate Hermite polynomials H,,

j>1

Cohen, DeVore, Migliorati '17). Let 0 < ¢ < oo and 0 < p < 2 such
Assume there exists a positive sequence p = (p;);>1 such that

Theorem
that L =
q

(B
1 l
p 2
(b7 )iz € L/0N) und sup 7 sy ()] < oo
D>
Then (||uu||v),/€; € LP(F).

> For {t;} with multilevel structure such that |[¢);||pe < 2749,

U — Z u, H,

vEA,

_ a
<n™° foranys< —
L2(RN,V,®].21N(0,1)) d

M. Bachmayr, A. Cohen, R. DeVore, and G. Migliorati, Sparse polynomial approximation of parametric
elliptic PDEs. Part Il: lognormal coefficients, ESAIM M2AN, 2017



Gaussian random fields

D C R?, centered Gaussian random field (b(:p))zeD with covariance function

E(b(z)b(z")) = K(z,2"), 2" € D.

Given K, find {;} such that  b(z) =Y w;1(x), y; ~N(0,1) iid.
j=1

» Classical choice: Karhunen-Loéve decomposition,
b(x) =D \VAjpsi(@)y;  with y; ~ N(0,1) iid.
j=1

with (), ¢;) eigenpairs of covariance operator, where ¢; is L?-orthonormal

» Not the only option! Precise criterion (Luschgy, Pages '09):

1; provide an expansion with y; i.i.d. precisely when 1); Parseval frame in
reproducing kernel Hilbert space of K



Expansions of the Brownian bridge

K(s,t) = min{s,t} — st, with RKHS H{ (0, 1),
series b= 3., y;4; on D = (0, 1):

2
» KL expansion: v;(z) = ﬂ% sin(mjx),

[95l[oe ~ " with [supp ;| = 1. /\

» Lévy-Ciesielski representation:
using Schauder basis (primitives of Haar system)

Yom(a) =272 —m), m=0,...,2° =1, £>
where ¢ (z) := 1 (1 — |2z — 1|)+.
Ordering from coarse to fine, 1 := ¢, for j = 2 +m,

| 1 -
[4jllLee ~ 7% and [supp ;| ~ 5"



Gaussian random fields

D C R?, centered and stationary Gaussian random field (b(w))weD with covariance
function
E(b(z)b(z")) = K(z,2") = k(z — a'), x,2" € D.

» Matérn covariances

k(z) = il(;; (@"’”')K(@) V>0,

where K, is the modified Bessel function of the second kind, Fourier transform:

—(v+d/2) d_d/2 v
S 2v 2 2% T (v 4 d/2)(2v)
k(w) = cun ()\2 + |w] ) , Cun = NOIG .

(Exponential covariance v = 1, Gaussian covariance v — c0)



Matérn samples

15



Periodization of stationary Gaussian random fields

» Stationary periodic Gaussian random fields on a torus T with periodic covariance

function: KL eigenfunctions are Fourier exponentials \pi’ onT

» Periodization (B., Cohen, Migliorati '17): periodize k with suitable cutoff
function ¢,

ko(@) = 3 (k)(@ + 2ym),

nezd

positive semidefinite for sufficiently large v

if (14 W)™ Sh@) S A+ )™, 0<r<s
and lim |0%k|dz =0 for |a| < 2[s],
R—o0 |z|>R

in particular all Matérn covariances!
(Related results in special cases: Stein '02, Gneiting et al. '06, Helgason et al. '14, ...)

> Leads to an improved version of sampling by circulant embedding?

M. Bachmayr, A. Cohen, and G. Migliorati, Representations of Gaussian random fields and
approximation of elliptic PDEs with lognormal coefficients, JFAA, 2018

2M. Bachmayr, |. G. Graham, V. K. Nguyen, and R. Scheichl, Unified analysis of periodization-based
sampling methods for Matérn covariances, SINUM, 2020



Construction of wavelet expansions

» Given: centered stationary Gaussian random field on domain D with covariance
function k

» Embed D into a torus T, periodized random field with covariance &,

> Start from periodic L?(T)-orthonormal Meyer wavelets
\I/é,m = chl,m)gO?
J

with localized supports on T.

» Apply square root of the covariance operator on T,
Lm
Gom = DN T,
J

Ve,m = wzm\p Parseval frame of the reproducing kernel Hilbert space of k.

» Verify that also 9, are still localized, under additional assumptions on k

satisfied by Matérn covariance (decay of higher-order derivatives of @1/2)

M. Bachmayr, A. Cohen, and G. Migliorati, Representations of Gaussian random fields and
approximation of elliptic PDEs with lognormal coefficients, JFAA, 2018



Matérn wavelets, 1D case on D = [—%_/ %}

Matérn covariance with A =1, v = %: plots of ¥y, where 1 1, (2) = ¥ (2¢z — m)
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Matérn covariance with A = 1, v = 4: plots of v, where ¥y 1, () = 10 (2'z — m)
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Conclusion: For a = exp(b), Matérn-type b with realizations in C*B(D) for B < a in
wavelet representation, where |9 o < 2749,

u— Z u, H,

vEA,

_ a
<n™® foranys< —
LR, V@, ey N(0,1)) d

» Analogous representations for isotropic random fields
on the sphere®: based on spherical needlets
(Narcowich, Petrushev, Ward '06)

» Work in progress: more general smooth surfaces

3M. Bachmayr and A. Djurdjevac, Multilevel representations of isotropic Gaussian random fields on the
sphere, IMA JNA, 2022

20



Fully discrete approximability

For each v € F, choose V,, C V with N, :=dimV, < oo and take approximations un

from
ww={Y wlivnen}, N=X N

veF veF

For affine case: a(y) =a+ Zyg,mwg,m uniformly elliptic, ¥ ~ [~1,1]"

L,m
Adaptive approximations (d > 2) (B., Cohen, Diing, Schwab '17)

Let d > 2 and « € (0, 1], let a be given in multilevel expansion with

su ml <27% su Viom| S 2= (@=DE gorall £ >0,
nglw S ) ngl Ve,m] >
let D be convex or smooth and let f € L*(D). Then for each N there exist (V,),er
such that for the corresponding Vy,

. — (e}
UNHéi;NHu —unllr2vvy SN° forany s < oL

M. Bachmayr, A. Cohen, D. Diing, and Ch. Schwab, Fully discrete approximation of parametric and
stochastic elliptic PDEs, SINUM, 2017

21



Space-parameter adaptivity

» How to choose (V. ).cr, total number of degrees of freedom N =Y N, ?

veF

» Adaptive wavelet approximation for each v:

{¥1}res wavelet Riesz basis of V = H{ (D),
HZVA WIN® L

~» expansion u = E wy, ¥y ® Ly
A, v

1 > vaul? ver(SxF)
v

» Best N-term approximation by keeping (A, v) with N largest |ux,,|:

_ 1 1
lu =l L2y, v = la—=ulle, < N“lal|as ~ N(e) = [lul| g6 =

22



Example

Multiscale representation in d = 1, with a = 1,

Ye,m(T) = 02_4111(221’ —m)

_1+nymwlm ~r uy) ZUV Vy

l,m vEF

AAA

23



d=1: aly)=a+ Zyj t;, ; hierarchical hat functions, ||1;|pe <2740
j=1

Values |uy,| (for o =1):

v (decreasing |luy||v)

24



Stochastic Galerkin discretization: ux € Vy such that

/ / aVuy - Vodz du(y) = / (f,v)du(y), forallve Vy
[-1,1NJD [—1,1N

Operator representation w.r.t. spatial-parametric Riesz basis {Uy ® L, }rcs ver,

A= A;@M;: (SxF) = (S x F)

Jj=0

where Ao = (/ aviw,, ~V‘1/,\) R )
D NN ES ’

A= ( / ijwm) M= ( / iju(y)Lw(y)d#(y)) il
D AN ES U v, eF

~» well-conditioned sequence-space formulation Au = f.
Standard adaptive Galerkin scheme
(Cohen, Dahmen, DeVore '01; Gantumur, Harbrecht, Stevenson '07)

Given A* ¢ S x F, compute Galerkin solution ux on A*, approximate rj, = Auy, — f,
and with fixed p € (0,1) set

AFTT = A" UA  with A of minimal size such that |r

allez > pllrlle2

25



Direct residual approximation

» Residual approximation for stochastic Galerkin systems can be done based on
standard compression techniques for A (using s*-compressibility)

> For v; with global supports, rates generally not optimal (Gittelson '13, '14)

> Observation for {1} with multilevel structure such that ||i);||zoc < 270
(ordered by level): A =3, ,A; @ M; satisfies

HZAj®Mj SMi%.
J>M

» Compression based on approximations Zj<M A ® M; combined with spatial
s*-compressibility of the A;: sub-optimal rates
" t
s =

T t+d

ale

when ; VW, € H'.

4M. Bachmayr, A. Cohen, and W. Dahmen, Parametric PDEs: Sparse or low-rank approximations?, IMA

JNA, 2018
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Optimal solver using wavelets

» [teratively refined stochastic Galerkin discretizations with spatial approximation by
H?-regular spline wavelets, piecewise polynomial (approximations of) v;

New residual approximation strategy:
» Adaptive semidiscrete operator compression in parametric variables, based on
> <m A @My,
» Spatial error estimation using tree index sets and piecewise polynomial structure
without adaptive operator compression (Stevenson '14; Binev '18)

Optimality (B., Voulis '22)

If the best approximation to u converges at rate s < 9 then for each € > 0, the

adaptive scheme with appropriately chosen parameters finds an approximation u. with
1

lu — uelly < e using O(1+= = (1+[loge|)) operations.

(see also Bespalov, Praetorius, Ruggeri '21: optimal cardinality under saturation assumption)

M. Bachmayr and I. Voulis, An adaptive stochastic Galerkin method based on multilevel expansions of
random fields: Convergence and optimality, ESAIM M2AN, 2022

27



Numerical experiments: wavelets, d = 2 (B., Voulis '22)

D = (0,1)%, the,m hierarchical piecewise linear hat functions with ||¢be,m |1, < 27,
spatial discretization by C'' piecewise polynomial DGH multiwavelets of order 6;

H e
expected fully discrete rate 5.
5 1 . 2

d=2a=3; d=2a=3
6x 107 \. mate s = 1 N\, rate s = 1

N, \,

\, \,

N\, \
4x 1078 N, \,
N, \,
\. \
3107 \, "\,
N, ~.
\ ~.
\ N
2% 107 \ .
\ N,
\ 1078 \,
N \,
N N,
A N\

10* 10* 10° 10° 10° 10* 10°

103

10-*
10~

10° 10° 10 10° 10° 10° 10! 10°

Residual estimates as a function of #dof (—) and of computation time (--)
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Finite element approximations in space?

Aim: u(y) = Z uy Ly (y) with u, € P1(T,) NV, separate mesh 7T, for each v
veEA

Same example withd =1, a =1, [\ [\
Yom(x) == 2~ (2" — m)

ay) =1+ Y yemtbem ~ u(y) =Y wli(y)

,m veF

29



Legendre coefficient functions v, : [0,1] — R in u(y) = >, c 7 uv Lu(y) with
diffusion coefficient a expanded in terms of hierarchical hat functions:

v =(0,0,0,...
( ) v =(0,0,0,1,...)

v =(0,0,0,0,1,...)
v =(0,0,0,0,0,1,...) v=(1,0,1,0,...)
v =(0,0,0,0,0,0,1,...)

v =(1,0,0,...)

30



Best (dyadic) grids for piecewise linear approximations of u,:

Wl R
W
Al
\J \&
b,
v =(0,0,0,... .
( ) v =(0,0,0,1,...) v=(1,1,0,0,...
v =(0,0,0,0,1,...)
v =(0,0,0,0,0,1,...) v=(1,0,1,0,...)
v =(0,0,0,0,0,0,1,...)
A
/h v=1(0,...... ,0,1,
v=0(0,...... ,0,0,1,...)

31



Towards an optimal adaptive finite element solver
» Piecewise affine linear finite element approximation on independent adaptive mesh
for each u,, refinement by standard newest vertex bisection

» Again using adaptive operator compression in the stochastic variables.

> Standard finite element error estimation strategies (e.g., residual estimators) not
applicable due to interactions between meshes, lack of Galerkin orthogonality
(see also Cohen, DeVore, Nochetto '12)

> Instead use BPX frame coefficients (cf. Harbrecht, Schneider '16): for

reV' =H (D),
Il = > > 1 esn))?

j=0 keN;
with ¢, 1 piecewise linear hat function on level 5 (with ||4Pj,k||H3(D) ~1)
» Choose refinements by tree-based selection of frame-based indicators (Binev '18)

First result®: reduction of stochastic Galerkin energy norm error by uniform factor in
each step of the adaptive scheme, linear convergence to exact solution.

)

5M. Bachmayr, M. Eigel, H. Eisenmann and |. Voulis, A convergent adaptive finite element stochastic
Galerkin method based on multilevel expansions of random fields, to appear in SINUM

32



Finite elements, d = 2 (B., Eigel, Eisenmann, Voulis '24)

L-shaped domain, multilevel hat functions ¢ . with [|[$em|lz., < 27,
spatial discretization by IP; elements on newest vertex bisection meshes.

A\ 6x 1070

Residual estimates as a function of #dof (parametric —, all —) and of computation time (--)
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(B., Eigel, Eisenmann, Voulis '24)

2

Finite elements, d

34



Optimal complexity

First consider optimality of generated discretizations assuming

> affine coefficients a(y) = a + Zyj'l/]j,
j>1

> best approximations of u in Vn converging as O(N %) with s < a/d.
Theorem (B., Eisenmann, Voulis '25; abridged).
» The meshes generated by the method have optimal cardinality:
lu —unllreyvv,y <€ with NS et/e,

» If {¢);} have multilevel structure, near-optimal total number of operations

0(871/3(1 + |logel®)) for all s < a/d.

» Main new ingredient: stability property of finite element frames on adaptively
refined (newest vertex bisection) meshes

M. Bachmayr, H. Eisenmann and |. Voulis, Adaptive stochastic Galerkin finite element methods:
Optimality and non-affine coefficients, arXiv:2503.18704

35



Extension to non-affine coefficients

» Uniformly elliptic coefficients of the form (e.g., log-uniform case g = exp)
a(y) = 9(D u0;) with iid. y; ~U(-1,1),
j=1
» Requires new semi-discrete operator compression

» Basic strategy: for g analytic in sufficiently large rectangle in C, use polynomial
approximations of g.

Theorem (B., Eisenmann, Voulis '25; abridged).

Assuming {¢; } with multilevel structure as before and best approximation rate
s < a/d, then

lu —unllrzyvv,y <€ with NS e~te

using a number of operations of order
(’)(afl/s/(l + [loge|™)) forall s < s < a/d

with r > 0 independent of s', s, k.

M. Bachmayr, H. Eisenmann and |. Voulis, Adaptive stochastic Galerkin finite element methods:
Optimality and non-affine coefficients, arXiv:2503.18704
36
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