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Albert Cohen 
coded in JPEG
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OVERVIEW 

2. Our 2019 paper revisited
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The original paper
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MV: I work on phase retrieval from Fourier magnitude, can you help me?

Mistral Le Chat output: 
1. Gerchberg-Saxton Algorithm
2. Fienup Algorithm
3. Convex Relaxation
4. Deep Learning
5. Compressed Sensing

I am interested in the case when the signal is sparse in time domain, like 
a sequence of Dirac pulses at arbitrary locations

M:

ADMM etc 

State of the art, 6 years later…
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MV: Let me formulate the problem: … our algorithm estimates the signal on a continuous domain, 
which makes it the first of its kind. 

M: 

etc….

State of the art, 6 years later…



State of the art, 6 years later…
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MV: is there previous work I can cite, and by which authors?

M: Certainly… the usual suspects, Gerchberg-Saxton, Fienup, 
convex relaxation, compressed sensing, FRI etc and…

MV: I think there is a paper entitled ''Super Resolution Phase 
Retrieval for Sparse Signals'' which could be relevant?



OVERVIEW 

3. Super Resolution Phase 
    Retrieval for Sparse Signals
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Sparse phase retrieval: problem formulation
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How to reconstruct a sparse signal

<latexit sha1_base64="y6y4BcPF1AZjwhi+TqnCblBzKKU=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0VsQUsiUt0UCm4ENxXsA5oYJtNJO2TyYGYiLaGf4MZfceNCEbcu3fk3TtsstPXAhcM593LvPW7MqJCG8a3llpZXVtfy64WNza3tHX13ryWihGPSxBGLeMdFgjAakqakkpFOzAkKXEbarn818dsPhAsahXdyFBM7QP2QehQjqSRHP/ZKwzKsQUskgZP6NXN8fwOx40OrR5hEpSE8hUPHLzt60agYU8BFYmakCDI0HP3L6kU4CUgoMUNCdE0jlnaKuKSYkXHBSgSJEfZRn3QVDVFAhJ1OHxrDI6X0oBdxVaGEU/X3RIoCIUaBqzoDJAdi3puI/3ndRHqXdkrDOJEkxLNFXsKgjOAkHdijnGDJRoogzKm6FeIB4ghLlWFBhWDOv7xIWmcVs1qp3p4X6ydZHHlwAA5BCZjgAtTBNWiAJsDgETyDV/CmPWkv2rv2MWvNadnMPvgD7fMHCdqapw==</latexit>

f(x) =
K∑

k=1

ckω(x→ xk)

from the magnitude of its Fourier transform              ?
<latexit sha1_base64="QsJrNigWnm1SYW3bUr7kgT49uAw=">AAACBHicbVDLSsNAFJ34rPEVddnNYBEqSEmKVJcFQVxWsA9oYplMp+3QyUyYmQgldOHGX3HjQhG3foQ7/8ZJm4W2HrhwOOde7r0njBlV2nW/rZXVtfWNzcKWvb2zu7fvHBy2lEgkJk0smJCdECnCKCdNTTUjnVgSFIWMtMPxVea3H4hUVPA7PYlJEKEhpwOKkTZSzyn6zNg6vS77IiJDdDr1ZSbcV22755TcijsDXCZeTkogR6PnfPl9gZOIcI0ZUqrrubEOUiQ1xYxMbT9RJEZ4jIakayhHEVFBOntiCk+M0ocDIU1xDWfq74kURUpNotB0RkiP1KKXif953UQPLoOU8jjRhOP5okHCoBYwSwT2qSRYs4khCEtqboV4hCTC2uSWheAtvrxMWtWKV6vUbs9L9bM8jgIogmNQBh64AHVwAxqgCTB4BM/gFbxZT9aL9W59zFtXrHzmCPyB9fkDoFGXXg==</latexit>

|F (ω)|2

Applications:

• X-ray crystallography, diffractive imaging, …

• Speckle imaging

• Blind deconvolution and channel estimation

• Spectral factorization



Problem formulation in the Fourier domain
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K-sparse signal
<latexit sha1_base64="y6y4BcPF1AZjwhi+TqnCblBzKKU=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0VsQUsiUt0UCm4ENxXsA5oYJtNJO2TyYGYiLaGf4MZfceNCEbcu3fk3TtsstPXAhcM593LvPW7MqJCG8a3llpZXVtfy64WNza3tHX13ryWihGPSxBGLeMdFgjAakqakkpFOzAkKXEbarn818dsPhAsahXdyFBM7QP2QehQjqSRHP/ZKwzKsQUskgZP6NXN8fwOx40OrR5hEpSE8hUPHLzt60agYU8BFYmakCDI0HP3L6kU4CUgoMUNCdE0jlnaKuKSYkXHBSgSJEfZRn3QVDVFAhJ1OHxrDI6X0oBdxVaGEU/X3RIoCIUaBqzoDJAdi3puI/3ndRHqXdkrDOJEkxLNFXsKgjOAkHdijnGDJRoogzKm6FeIB4ghLlWFBhWDOv7xIWmcVs1qp3p4X6ydZHHlwAA5BCZjgAtTBNWiAJsDgETyDV/CmPWkv2rv2MWvNadnMPvgD7fMHCdqapw==</latexit>

f(x) =
K∑

k=1

ckω(x→ xk)

<latexit sha1_base64="+ZegwVzfalZDzT+FOcDU3NAwgKI="></latexit>

F (ω) =
K∑

k=1

cke
→jω→xk

Fourier 
transform

<latexit sha1_base64="Y+0pONKhxvE82p9LS2E2KEV2+o4="></latexit>

a(x) =
K∑

k=1

K∑

ω=1

ckcωω
(
x→ (xk → xω)

)

Auto-correlation function

Fourier 
transform

<latexit sha1_base64="jWAmiUXMCD7GjZwWCQnwn/KXWFQ=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iEClKSItVlQRCXFewDmlgm00k7dCYTZiZCCcWNv+LGhSJu/Qp3/o2TNgutHrhwOOde7r0niBlV2nG+rMLS8srqWnG9tLG5tb1j7+61lUgkJi0smJDdACnCaERammpGurEkiAeMdILxZeZ37olUVES3ehITn6NhREOKkTZS3z7wmLE1vKp4gpMhOoGezIS7Wt8uO1VnBviXuDkpgxzNvv3pDQROOIk0ZkipnuvE2k+R1BQzMi15iSIxwmM0JD1DI8SJ8tPZC1N4bJQBDIU0FWk4U39OpIgrNeGB6eRIj9Sil4n/eb1Ehxd+SqM40STC80VhwqAWMMsDDqgkWLOJIQhLam6FeIQkwtqkVjIhuIsv/yXtWtWtV+s3Z+XGaR5HERyCI1ABLjgHDXANmqAFMHgAT+AFvFqP1rP1Zr3PWwtWPrMPfsH6+AYEGpZ+</latexit>

|F (ω)|2

Fourier 
magnitude



A proposed three-stage approach
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Step 1: we leverage the finite rate of innovation sampling theory to super-resolve the ACF 
from a limited number of samples

Step 2: we design a greedy algorithm that identifies the locations of a sparse solution given the 
super-resolved ACF

Step 3: we recover the amplitudes of the atoms given their locations and the measured auto-
correlation function.

Equivalent problem:

Estimate the support and weights from (samples) of the Fourier transform 

of the auto-correlation function (ACF)

<latexit sha1_base64="/cniGmIGHxIwgr8YiIvUf07AY5Q=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgQkoiUl0W3AhuKtgHNCFMpjft0MmDmYlaYj7FjQtF3Pol7vwbp20W2nrgwuGce7n3Hj/hTCrL+jZKK6tr6xvlzcrW9s7unlnd78g4FRTaNOax6PlEAmcRtBVTHHqJABL6HLr++Grqd+9BSBZHd2qSgBuSYcQCRonSkmdWnezRGzu5l42xwwHf5J5Zs+rWDHiZ2AWpoQItz/xyBjFNQ4gU5UTKvm0lys2IUIxyyCtOKiEhdEyG0Nc0IiFIN5udnuNjrQxwEAtdkcIz9fdERkIpJ6GvO0OiRnLRm4r/ef1UBZduxqIkVRDR+aIg5VjFeJoDHjABVPGJJoQKpm/FdEQEoUqnVdEh2IsvL5POWd1u1Bu357XmaRFHGR2iI3SCbHSBmugatVAbUfSAntErejOejBfj3fiYt5aMYuYA/YHx+QPnGJO2</latexit>

{xk}k→K
<latexit sha1_base64="rwB0waemEffY39oXxBWiq6iBaBQ=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4kJKIVJcFN4KbCvYBTQiT6aQdMnkwM1FKzKe4caGIW7/EnX/jtM1CWw9cOJxzL/fe46ecSWVZ38bK6tr6xmZlq7q9s7u3b9YOujLJBKEdkvBE9H0sKWcx7SimOO2nguLI57Tnh9dTv/dAhWRJfK8mKXUjPIpZwAhWWvLMmpMTL3QKLw+Rwym6LTyzbjWsGdAysUtShxJtz/xyhgnJIhorwrGUA9tKlZtjoRjhtKg6maQpJiEe0YGmMY6odPPZ6QU60coQBYnQFSs0U39P5DiSchL5ujPCaiwXvan4nzfIVHDl5ixOM0VjMl8UZBypBE1zQEMmKFF8ogkmgulbERljgYnSaVV1CPbiy8uke96wm43m3UW9dVbGUYEjOIZTsOESWnADbegAgUd4hld4M56MF+Pd+Ji3rhjlzCH8gfH5A8Yek6E=</latexit>

{ck}k→K



Step 1: super-resolve the ACF via finite-rate-of-innovation
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Fig. 1. Typical PR measurement pipeline: the signal of interest fs(x) generates the auto-correlation function as(x), which is first filtered by the scattering
function ψ(x) (here an ideal lowpass filter) to yield a(x) and then sampled, resulting in an. Note that the spatial samples an can be obtained via the inverse
discrete FT of the Fourier samples Am, when the periodicity in the two domains holds. Darker colors represent higher intensities.

Finally, Section IX compares our PR pipeline with the state-
of-the-art.

Throughout this paper, we use bold lower case letters for
vectors and bold upper case letters for matrices. Upper case cal-
ligraphic letters denote sets, e.g. X . Furthermore, X̃ represents
a set with noisy elements and X̂ an estimated set. Subscripts are
reserved for indexing elements in lists and vectors. In the primal
domain, continuous functions are written in lower case letters
and indexed withx, e.g. f(x) and discrete functions are indexed
with n, e.g. fn. In the Fourier domain, we use capital letters,
that is F (ω) and Fm, for continuous and discrete functions,
respectively.

II. PROBLEM STATEMENT

We consider the FT of the signal defined in (1),

F (ω) =
K∑

k=1

ck exp
{
−jω"xk

}
Φ(ω), (2)

where ω is the frequency variable and Φ(ω) is the FT of the
known kernel φ(x).

In practice, it is impossible to measure the whole FT (2),
hence we sample it. Furthermore, due to limitations of the
measurement setup, we are usually only able to measure the
absolute values of such samples, that we denote |Fm|, where
Fm = F (mΩ), m = ZD and Ω is the sampling frequency. As
previously mentioned, the PR problem has infinite solutions
without a-priori knowledge of the signal f(x), since we can
assign any phase to the measurements and obtain a plausible
reconstruction. The role of structures, such as (1), is to constrain
the PR problem to a correct and possibly unique solution. Under
the sparsity assumption, retrieving the phase is equivalent to
retrieving the locations and amplitudes of f(x).

The auto-correlation function (ACF) a(x) of f(x) is given
by the inverse FT of |F (ω)|2:

a(x) = f(x) ∗ f(−x) = F−1
[
|F (ω)|2

]
, (3)

where F−1 is the inverse FT operator [22]. Interestingly, the
ACF structure is completely inherited from the signal (1):

a(x) =
K∑

k=1

K∑

!=1

ckc!ψ(x− (xk − x!))

=

[
K∑

k=1

K∑

!=1

ckc!δ(x− (xk − x!))

]
∗ ψ(x)

= as(x) ∗ ψ(x), (4)

where the kernel ψ(x) is the ACF of φ(x) and as(x) is the ACF
of the sparse structure of the train of Diracs fs(x). Equivalently,
in the Fourier domain, we have

A(ω) =
K∑

k=1

K∑

!=1

ckc! exp
{
−jω"(xk − x!)

}
|Φ(ω)|2. (5)

The PR acquisition pipeline can be summarized as the filtering
of the ACF as(x) followed by sampling, where the filtering
represents the scattering operation, as illustrated in Fig. 1. We
now have all the ingredients to state the core problem of this
paper.

Problem 1: Given Fourier samples Am = A(mΩ) of the
sparse ACF defined in (4), recover the support X = {xk}Kk=1
and amplitudes {ck}Kk=1 determining the signal f(x).

Note that the information we are interested in is hidden behind
two walls: the convolution with the kernel ψ(x) that spatially
blurs the sparse structure of the ACF and the phase loss of the
original sparse signal, fs(x), that usually characterizes any PR
problem.

III. A THREE-STAGE APPROACH

We propose to solve Problem 1 in three distinct stages: i)
reconstruct the continuous ACF a(x) from a set of its discrete
Fourier coefficients, ii) estimate the support X of f(x) given
a(x), and iii) estimate its amplitudes {ck}Kk=1.

The first step is a classical sampling problem where we would
like to fully characterize a continuous sparse signal from a set
of discrete measurements.

Problem 1.A (Sparse ACF super resolution): Given
samples Am of the sparse ACF as defined in (4), recover
its continuous version a(x).

The most well-known sampling result is due to Nyquist-
Shannon-Kotelnikov and guarantees perfect recovery for signals
that lie in the subspace of bandlimited functions, provided that
the sampling rate is high enough.

However, we suggest to leverage the sparsity of the underlying
signal and recovery the ACF a(x) via its parameters ckcl and
xk − xl. Such parameters are then used for the successive steps
of the PR process. Sparsity has two antagonistic effects on PR: it
makes the problem combinatorial and hence hard to solve, but at
the same time enables a divide-and-conquer approach, in which
we first recover the support {xk}Kk=1 and then the amplitudes

<latexit sha1_base64="Y+0pONKhxvE82p9LS2E2KEV2+o4=">AAACPnicbZBLSwMxFIUzvq2vqks3wSJMwZYZEXUjCG4ENxWsFjrjkElva2jmQZKRlqG/zI2/wZ1LNy4UcevSzHQW2nrhwsl3cknu8WPOpLKsF2Nmdm5+YXFpubSyura+Ud7cupFRIig0acQj0fKJBM5CaCqmOLRiASTwOdz6/fPMv30AIVkUXqthDG5AeiHrMkqURl65ScxBFZ9iRyaBl/bxqT26uyxODnCurZxQr687J04HuCKOz3rmANewOdBWDQ9ys5rhaskrV6y6lReeFnYhKqiohld+djoRTQIIFeVEyrZtxcpNiVCMchiVnERCTGif9KCtZUgCkG6arz/Ce5p0cDcSukOFc/p7IiWBlMPA1zcDou7lpJfB/7x2oronbsrCOFEQ0vFD3YRjFeEsS9xhAqjiQy0IFUz/FdN7IghVOvEsBHty5Wlxc1C3j+pHV4eVs/0ijiW0g3aRiWx0jM7QBWqgJqLoEb2id/RhPBlvxqfxNb46YxQz2+hPGd8/J5irdQ==</latexit>

a(x) =
K∑

k=1

K∑

ω=1

ckcωω
(
x→ (xk → xω)

)
Observation: The ACF                                                           is still a sparse function, 

containing                      atoms. 
<latexit sha1_base64="v7DL18DAUu+giSe3jUokNYLMkR8=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRZBUMtukeqx4EXopYL9gO1asmm2Dc0mS5IVSunP8OJBEa/+Gm/+G9N2D1p9MPB4b4aZeWHCmTau++XkVlbX1jfym4Wt7Z3dveL+QUvLVBHaJJJL1QmxppwJ2jTMcNpJFMVxyGk7HN3M/PYjVZpJcW/GCQ1iPBAsYgQbK/n1hwq6QHV0hrxeseSW3TnQX+JlpAQZGr3iZ7cvSRpTYQjHWvuem5hggpVhhNNpoZtqmmAywgPqWypwTHUwmZ88RSdW6aNIKlvCoLn6c2KCY63HcWg7Y2yGetmbif95fmqi62DCRJIaKshiUZRyZCSa/Y/6TFFi+NgSTBSztyIyxAoTY1Mq2BC85Zf/klal7FXL1bvLUu08iyMPR3AMp+DBFdTgFhrQBAISnuAFXh3jPDtvzvuiNedkM4fwC87HN/pjjww=</latexit>

K2 →K + 1

Finite-rate-of-innovation sampling [Vetterli, Marziliano, Blu, 2002]

• Super-resolution techniques from limited samples, with connections to spectral analysis 
techniques (e.g. Prony’s method)

• Sample complexity for ACF:             samples [Pan, Blu, and Vetterli, 2018]
<latexit sha1_base64="AmcpryrwQRtdc49PGha6juXCpGA=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRahgpSZItVlwY3gwgr2Ae1YMmnahmYyQ5IplKF/4saFIm79E3f+jZl2Ftp6IHA4517uyfEjzpR2nG8rt7a+sbmV3y7s7O7tH9iHR00VxpLQBgl5KNs+VpQzQRuaaU7bkaQ48Dlt+eOb1G9NqFQsFI96GlEvwEPBBoxgbaSebXcDrEcE8+R+Vrp7qpz37KJTduZAq8TNSBEy1Hv2V7cfkjigQhOOleq4TqS9BEvNCKezQjdWNMJkjIe0Y6jAAVVeMk8+Q2dG6aNBKM0TGs3V3xsJDpSaBr6ZTHOqZS8V//M6sR5cewkTUaypIItDg5gjHaK0BtRnkhLNp4ZgIpnJisgIS0y0KatgSnCXv7xKmpWyWy1XHy6LtYusjjycwCmUwIUrqMEt1KEBBCbwDK/wZiXWi/VufSxGc1a2cwx/YH3+AJMFkuk=</latexit>

O(K2)



Step 2: estimate the locations of the atoms
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Problem formulation: 

Estimate the locations of the atoms                         from the set of pairwise differences<latexit sha1_base64="NZ5AUmiJoICKSOIO5hRsODJ0ZG8=">AAAB/nicbVDLSgMxFM3UV62vUXHlJlgEF6XMFKkuC24ENxXsA9phyGQybWgmGZKMtAwFf8WNC0Xc+h3u/BvTdhbaeuDCyTn3kntPkDCqtON8W4W19Y3NreJ2aWd3b//APjxqK5FKTFpYMCG7AVKEUU5ammpGuokkKA4Y6QSjm5nfeSRSUcEf9CQhXowGnEYUI20k3z4Z+24Fjv1aBfZZKLSaPe58u+xUnTngKnFzUgY5mr791Q8FTmPCNWZIqZ7rJNrLkNQUMzIt9VNFEoRHaEB6hnIUE+Vl8/Wn8NwoIYyENMU1nKu/JzIUKzWJA9MZIz1Uy95M/M/rpTq69jLKk1QTjhcfRSmDWsBZFjCkkmDNJoYgLKnZFeIhkghrk1jJhOAun7xK2rWqW6/W7y/LjUoeRxGcgjNwAVxwBRrgFjRBC2CQgWfwCt6sJ+vFerc+Fq0FK585Bn9gff4AyZGUCw==</latexit>x1, x2, . . . , xK
<latexit sha1_base64="B/YuByFDqWe/GoOdU+BHM2XhyXE=">AAACEXicbZDLSsNAFIYnXmu9RV26GSxCF7UkItWNUHDjsoK9QBPCZDpph04mYWYiLSGv4MZXceNCEbfu3Pk2TtostPWHgY//nMOc8/sxo1JZ1rexsrq2vrFZ2ipv7+zu7ZsHhx0ZJQKTNo5YJHo+koRRTtqKKkZ6sSAo9Bnp+uObvN59IELSiN+raUzcEA05DShGSlueWXVCpEYYsbSXwWvopBNvDM/gxHMIY07mpeMazDHzzIpVt2aCy2AXUAGFWp755QwinISEK8yQlH3bipWbIqEoZiQrO4kkMcJjNCR9jRyFRLrp7KIMnmpnAINI6McVnLm/J1IUSjkNfd2Z7y8Xa7n5X62fqODKTSmPE0U4nn8UJAyqCObxwAEVBCs21YCwoHpXiEdIIKx0iGUdgr148jJ0zut2o964u6g0a0UcJXAMTkAV2OASNMEtaIE2wOARPINX8GY8GS/Gu/Exb10xipkj8EfG5w9YSJyp</latexit>

X = {xk → xω}k,ω

Challenge: the difference set      is unlabeled
<latexit sha1_base64="wjFCceQbahiQkjafWWHs+JwFExI=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFcSElEqsuCG5cV7APaUCbTSTt0MgkzN0IJ/Qw3LhRx69e482+ctFlo64GBwzn3MueeIJHCoOt+O2vrG5tb26Wd8u7e/sFh5ei4beJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3OV+54lrI2L1iNOE+xEdKREKRtFKvX5EccyozLqzQaXq1tw5yCrxClKFAs1B5as/jFkacYVMUmN6npugn1GNgkk+K/dTwxPKJnTEe5YqGnHjZ/PIM3JulSEJY22fQjJXf29kNDJmGgV2Mo9olr1c/M/rpRje+plQSYpcscVHYSoJxiS/nwyF5gzl1BLKtLBZCRtTTRnalsq2BG/55FXSvqp59Vr94brauCzqKMEpnMEFeHADDbiHJrSAQQzP8ApvDjovzrvzsRhdc4qdE/gD5/MHkDWRYw==</latexit>

X

Skiena and Sundaram, “Reconstructing sets from interpoint distances,” 
in Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete 
Algorithms (SODA), 1995.
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Fig. 2. 2D Instance of Algorithm 1 on the ACF as(x) from Fig. 1. We start by
setting x̂1 = 0 and identifying x̂2, the point with the largest norm. Points x̂3 to
x̂5 are then selected in a greedy way according to (13). The solution coincides
with the initial signal fs(x) displayed in Fig. 1.

Algorithm 1: Support Recovery.

Input: A set of N = K2 −K + 1 differences D̃ =
{d̃n}Nn=1 ordered by their norms

Output: A set of K points X̂ such that their pairwise
differences generate D̃
X̂2 = {0, d̃N}
P2 = D̃ \ {d̃1, d̃N}
for k = 2, . . . ,K − 1 do

x̂k+1 = argmin
p∈Pk

∑
x̂∈X̂k

mind̃∈D̃

∥∥∥p− x̂− d̃
∥∥∥
2

X̂k+1 = X̂k ∪ x̂k+1

Pk+1 = Pk \ x̂k+1

end for
return X̂K

k we solve the following optimization problem,

x̂k+1 = argmin
p∈Pk

∑

x̂∈X̂k

min
d̃∈D̃

∥∥∥p− x̂− d̃
∥∥∥
2
. (13)

This procedure is summarized in Algorithm 1 and its appli-
cation on the ACF as(x) from Fig. 1 is illustrated in Fig. 2.

C. Amplitude Recovery

If we assume that collisions can occur, recovering the am-
plitudes with a given ACF and support is equivalent to solving
a system of quadratic equations. However, if there are no col-
lisions, we suggest a simple but efficient algebraic solution to
Problem 1.C, inspired from [29]. While the method of [29] relies
on a matrix inversion step to solve the problem, we propose here
to work in the logarithmic domain. Numerical simulations have
shown that it is both faster and more robust to noise.

Let c = [c1, c2, . . . , cK ]$ be a vector made of the amplitudes
to be recovered. If we define a matrix C = cc$, all the elements
outside of the diagonal of such a matrix are the amplitudes of
the measured ACF, that is Ci,j = cicj . Notice that we cannot

observe the diagonal entries Ci,i = c2i,i as we just have access
to their sum as0 =

∑
i c

2
i,i, which is the value of the ACF at 0.

This is unfortunate since they are precisely the values we are
interested in, up to a squaring operator.

We recast Problem 1.C as a matrix completion problem, where
we would like to estimate the diagonal entries Ci,i under the
constraint of C being a rank-one matrix. The first step of our
proposed method is to introduce a matrix L such that

Li,j =

{
log(Ci,j) = !i + !j for i %= j

0 otherwise,
(14)

where !i = log(ci). The sum of the ith row of L is given by

K∑

j=1

Li,j = (K − 1)!i +
K∑

j=1

!j − !i = (K − 2)!i +
K∑

j=1

!j ,

(15)

where the term
∑

j !j does not vary between rows. Hence, its
value can be obtained from summing all the entries in L,

s =
K∑

i=1

K∑

j=1

Li,j = (K − 2)
K∑

i=1

!i +K
K∑

j=1

!j

= 2(K − 1)
K∑

j=1

!j . (16)

Then, we recover the vector ! = [!1, !2, . . . , !K ]$ for K > 2 as

! =
1

K − 2

(
L$1 − s

2(K − 1)
1

)
, (17)

where 1 is the all-ones vector.5 Finally, it suffices to compute
ci = exp(!i) to retrieve the amplitudes.

Note that this solution assumes thatC is symmetric; this might
not be the case in a noisy setup, but we enforce it by replacing
C with 1

2 (C +C$). In case of collisions, the problem does not
have an algebraic solution and a possible convex relaxation is
provided in [14]. In practice, this is often not a concern due to
Observation 3.

Putting all pieces together, these three stages combines to
enable the recovery of a continuous signal from its noisy sampled
ACF; Figure 3 illustrates a few examples of recoveries of trains
of Diracs based on the combination of these three steps.

In what follows, we study and propose improvements to
the performance of our PR algorithm, focusing our attention
on the support recovery step, i.e. Algorithm 1. In fact, the
first step—the super-resolution with FRI—is well represented
in literature, where theoretical analyses, extensive simulations
in noisy scenarios and efficient denoising schemes have been
proposed [23], [24], [38]. On the other hand, the amplitude
recovery, while being novel, only consists of simple algebraic
manipulations that are not computationally costly.

5When K = 2, the entries !1, !2 can be recovered by solving a system of two
equations.
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Fig. 2. 2D Instance of Algorithm 1 on the ACF as(x) from Fig. 1. We start by
setting x̂1 = 0 and identifying x̂2, the point with the largest norm. Points x̂3 to
x̂5 are then selected in a greedy way according to (13). The solution coincides
with the initial signal fs(x) displayed in Fig. 1.
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Output: A set of K points X̂ such that their pairwise
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for k = 2, . . . ,K − 1 do
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This procedure is summarized in Algorithm 1 and its appli-
cation on the ACF as(x) from Fig. 1 is illustrated in Fig. 2.

C. Amplitude Recovery

If we assume that collisions can occur, recovering the am-
plitudes with a given ACF and support is equivalent to solving
a system of quadratic equations. However, if there are no col-
lisions, we suggest a simple but efficient algebraic solution to
Problem 1.C, inspired from [29]. While the method of [29] relies
on a matrix inversion step to solve the problem, we propose here
to work in the logarithmic domain. Numerical simulations have
shown that it is both faster and more robust to noise.

Let c = [c1, c2, . . . , cK ]$ be a vector made of the amplitudes
to be recovered. If we define a matrix C = cc$, all the elements
outside of the diagonal of such a matrix are the amplitudes of
the measured ACF, that is Ci,j = cicj . Notice that we cannot

observe the diagonal entries Ci,i = c2i,i as we just have access
to their sum as0 =

∑
i c

2
i,i, which is the value of the ACF at 0.

This is unfortunate since they are precisely the values we are
interested in, up to a squaring operator.

We recast Problem 1.C as a matrix completion problem, where
we would like to estimate the diagonal entries Ci,i under the
constraint of C being a rank-one matrix. The first step of our
proposed method is to introduce a matrix L such that

Li,j =

{
log(Ci,j) = !i + !j for i %= j

0 otherwise,
(14)

where !i = log(ci). The sum of the ith row of L is given by

K∑
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Li,j = (K − 1)!i +
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j=1

!j − !i = (K − 2)!i +
K∑
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!j ,

(15)

where the term
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j !j does not vary between rows. Hence, its
value can be obtained from summing all the entries in L,
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Li,j = (K − 2)
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!i +K
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= 2(K − 1)
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Then, we recover the vector ! = [!1, !2, . . . , !K ]$ for K > 2 as

! =
1

K − 2

(
L$1 − s

2(K − 1)
1

)
, (17)

where 1 is the all-ones vector.5 Finally, it suffices to compute
ci = exp(!i) to retrieve the amplitudes.

Note that this solution assumes thatC is symmetric; this might
not be the case in a noisy setup, but we enforce it by replacing
C with 1

2 (C +C$). In case of collisions, the problem does not
have an algebraic solution and a possible convex relaxation is
provided in [14]. In practice, this is often not a concern due to
Observation 3.

Putting all pieces together, these three stages combines to
enable the recovery of a continuous signal from its noisy sampled
ACF; Figure 3 illustrates a few examples of recoveries of trains
of Diracs based on the combination of these three steps.

In what follows, we study and propose improvements to
the performance of our PR algorithm, focusing our attention
on the support recovery step, i.e. Algorithm 1. In fact, the
first step—the super-resolution with FRI—is well represented
in literature, where theoretical analyses, extensive simulations
in noisy scenarios and efficient denoising schemes have been
proposed [23], [24], [38]. On the other hand, the amplitude
recovery, while being novel, only consists of simple algebraic
manipulations that are not computationally costly.

5When K = 2, the entries !1, !2 can be recovered by solving a system of two
equations.
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<latexit sha1_base64="Y+0pONKhxvE82p9LS2E2KEV2+o4="></latexit>

a(x) =
K∑

k=1

K∑

ω=1

ckcωω
(
x→ (xk → xω)

)

Auto-correlation function Amplitude recovery:

Estimate                   from          for <latexit sha1_base64="xat37hBVTg2DF+iAj+TZEU0w2Go=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBQymJSPVY8CJ4qWA/oA1hs9m0SzebsDsplNB/4sWDIl79J978N27bHLT1wcDjvRlm5gWp4Boc59sqbWxube+Udyt7+weHR/bxSUcnmaKsTRORqF5ANBNcsjZwEKyXKkbiQLBuML6b+90JU5on8gmmKfNiMpQ84pSAkXzbpr5bwwMRJqBrmPoPvl116s4CeJ24BamiAi3f/hqECc1iJoEKonXfdVLwcqKAU8FmlUGmWUromAxZ31BJYqa9fHH5DF8YJcRRokxJwAv190ROYq2ncWA6YwIjverNxf+8fgbRrZdzmWbAJF0uijKBIcHzGHDIFaMgpoYQqri5FdMRUYSCCatiQnBXX14nnau626g3Hq+rzVoRRxmdoXN0iVx0g5roHrVQG1E0Qc/oFb1ZufVivVsfy9aSVcycoj+wPn8AsPKSWg==</latexit>c1, . . . , cK
<latexit sha1_base64="67qv0VSN38R/xMawcPrCKUt5VAY=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBg5REpHosePFYwX5gG8JmO2mXbjZhdyOU0n/hxYMiXv033vw3btsctPXBwOO9GWbmhang2rjut1NYW9/Y3Cpul3Z29/YPyodHLZ1kimGTJSJRnZBqFFxi03AjsJMqpHEosB2Obmd++wmV5ol8MOMU/ZgOJI84o8ZKjywYERb0UIigXHGr7hxklXg5qUCORlD+6vUTlsUoDRNU667npsafUGU4Ezgt9TKNKWUjOsCupZLGqP3J/OIpObNKn0SJsiUNmau/JyY01noch7Yzpmaol72Z+J/XzUx040+4TDODki0WRZkgJiGz90mfK2RGjC2hTHF7K2FDqigzNqSSDcFbfnmVtC6rXq1au7+q1C/yOIpwAqdwDh5cQx3uoAFNYCDhGV7hzdHOi/PufCxaC04+cwx/4Hz+ABR3kHs=</latexit>ckcω

<latexit sha1_base64="FPP+2yxQhK5p+cmH4/TXxmzq+6E=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBg5REpHosePFYwX5AEspmO2mXbnbj7kYooT/DiwdFvPprvPlv3LY5aOuDgcd7M8zMi1LOtHHdb6e0tr6xuVXeruzs7u0fVA+POlpmikKbSi5VLyIaOBPQNsxw6KUKSBJx6Ebj25nffQKlmRQPZpJCmJChYDGjxFjJH+NAwCMOgPN+tebW3TnwKvEKUkMFWv3qVzCQNEtAGMqJ1r7npibMiTKMcphWgkxDSuiYDMG3VJAEdJjPT57iM6sMcCyVLWHwXP09kZNE60kS2c6EmJFe9mbif56fmfgmzJlIMwOCLhbFGcdG4tn/eMAUUMMnlhCqmL0V0xFRhBqbUsWG4C2/vEo6l3WvUW/cX9WaF0UcZXSCTtE58tA1aqI71EJtRJFEz+gVvTnGeXHenY9Fa8kpZo7RHzifP5cVkME=</latexit>

k →= ω

A matrix completion problem!

Equivalent formulation: 

Estimate the missing diagonal entries of a 

rank-one symmetric matrix
<latexit sha1_base64="7+Rg6MvvKqegyHEc5IC0yzugcQw=">AAACCHicbZDLSsNAFIYnXmu9RV26cLAIFUpJRKoIQqEbwU0Fe4E2hMl00k47mYSZiVBCl258FTcuFHHrI7jzbZymWWjrDwMf/zmHM+f3IkalsqxvY2l5ZXVtPbeR39za3tk19/abMowFJg0cslC0PSQJo5w0FFWMtCNBUOAx0vJGtWm99UCEpCG/V+OIOAHqc+pTjJS2XPOoBq9hEbsUYnd4BW3YZQTSEhymcHvqmgWrbKWCi2BnUACZ6q751e2FOA4IV5ghKTu2FSknQUJRzMgk340liRAeoT7paOQoINJJ0kMm8EQ7PeiHQj+uYOr+nkhQIOU48HRngNRAztem5n+1Tqz8SyehPIoV4Xi2yI8ZVCGcpgJ7VBCs2FgDwoLqv0I8QAJhpbPL6xDs+ZMXoXlWtivlyt15oVrK4siBQ3AMisAGF6AKbkAdNAAGj+AZvII348l4Md6Nj1nrkpHNHIA/Mj5/AB0Bli0=</latexit>

C = (cicj : 1 → i, j → K)
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Matrix completion: Estimate the missing diagonal entries of a rank-one symmetric matrix

<latexit sha1_base64="7+Rg6MvvKqegyHEc5IC0yzugcQw=">AAACCHicbZDLSsNAFIYnXmu9RV26cLAIFUpJRKoIQqEbwU0Fe4E2hMl00k47mYSZiVBCl258FTcuFHHrI7jzbZymWWjrDwMf/zmHM+f3IkalsqxvY2l5ZXVtPbeR39za3tk19/abMowFJg0cslC0PSQJo5w0FFWMtCNBUOAx0vJGtWm99UCEpCG/V+OIOAHqc+pTjJS2XPOoBq9hEbsUYnd4BW3YZQTSEhymcHvqmgWrbKWCi2BnUACZ6q751e2FOA4IV5ghKTu2FSknQUJRzMgk340liRAeoT7paOQoINJJ0kMm8EQ7PeiHQj+uYOr+nkhQIOU48HRngNRAztem5n+1Tqz8SyehPIoV4Xi2yI8ZVCGcpgJ7VBCs2FgDwoLqv0I8QAJhpbPL6xDs+ZMXoXlWtivlyt15oVrK4siBQ3AMisAGF6AKbkAdNAAGj+AZvII348l4Md6Nj1nrkpHNHIA/Mj5/AB0Bli0=</latexit>

C = (cicj : 1 → i, j → K)

Let A closed-form solution:

<latexit sha1_base64="Wto1nyf8fS1njWx+f6iS+JznzP0="></latexit>

Lij =

{
log(Cij) = log(ci) + log(cj) for i →= j

0 otherwise

<latexit sha1_base64="kN8+RHxREV8QQJecP/ZwH38RsIY=">AAACE3icbVDLSgMxFM34rPVVdekmWIRWSpkRqW6EghvBTQX7gM5YMmnahmYmQ3JHKKX/4MZfceNCEbdu3Pk3ZqZdaOuByz2ccy/JPX4kuAbb/raWlldW19YzG9nNre2d3dzefkPLWFFWp1JI1fKJZoKHrA4cBGtFipHAF6zpD68Sv/nAlOYyvINRxLyA9EPe45SAkTq5E5cJgS9x2xWyX6Adp1jCruhK0ElPpZuid++CjDq5vF22U+BF4sxIHs1Q6+S+3K6kccBCoIJo3XbsCLwxUcCpYJOsG2sWETokfdY2NCQB0944vWmCj43SxT2pTIWAU/X3xpgEWo8C30wGBAZ63kvE/7x2DL0Lb8zDKAYW0ulDvVhgkDgJCHe5YhTEyBBCFTd/xXRAFKFgYsyaEJz5kxdJ47TsVMqV27N8tTSLI4MO0REqIAedoyq6RjVURxQ9omf0it6sJ+vFerc+pqNL1mznAP2B9fkDn6OcFw==</latexit>

ω = [log(c1), . . . , log(cK)]→

<latexit sha1_base64="9TG98IDQjQaTa7wfxOjBZTl/yvU="></latexit>

ω =
1

K → 2

(
L · →

→L

2(K → 1)

)

Define 

then 



Performance analysis and phase transitions

Ph
as

e 
re

tri
ev

al

M
ar

tin
 V

et
te

rli

19

Probability of successfully reconstructing K atoms at noise level <latexit sha1_base64="JVglf6LQhEjAOMfAq6bRdncvsoc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgQcKuSPQY8OIxgnlAsoTZyWwyZh7LzKwQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHjUMirVhDaJ4kp3ImwoZ5I2LbOcdhJNsYg4bUfj25nffqLaMCUf7CShocBDyWJGsHVSq2fYUOB+ueJX/TnQKglyUoEcjX75qzdQJBVUWsKxMd3AT2yYYW0Z4XRa6qWGJpiM8ZB2HZVYUBNm82un6MwpAxQr7UpaNFd/T2RYGDMRkesU2I7MsjcT//O6qY1vwozJJLVUksWiOOXIKjR7HQ2YpsTyiSOYaOZuRWSENSbWBVRyIQTLL6+S1mU1qFVr91eV+kUeRxFO4BTOIYBrqMMdNKAJBB7hGV7hzVPei/fufSxaC14+cwx/4H3+AJlTjxg=</latexit>ω

where

<latexit sha1_base64="M7q32YkafX7W9q46LDiCivjUV9o=">AAACDXicbVDLSgMxFM3UV62vUZduglVoUctMkepGKLgRZlPBPqCdDpk004bJPEgyQin9ATf+ihsXirh1786/MW1H0NYDgXPPuZebe9yYUSEN40vLLC2vrK5l13Mbm1vbO/ruXkNECcekjiMW8ZaLBGE0JHVJJSOtmBMUuIw0Xf964jfvCRc0Cu/kMCZ2gPoh9ShGUkmOfoQcv2AV4RUsWN0yPIPWiVns+j9V2YKqdvS8UTKmgIvETEkepKg5+menF+EkIKHEDAnRNo1Y2iPEJcWMjHOdRJAYYR/1SVvREAVE2KPpNWN4rJQe9CKuXijhVP09MUKBEMPAVZ0BkgMx703E/7x2Ir1Le0TDOJEkxLNFXsKgjOAkGtijnGDJhoogzKn6K8QDxBGWKsCcCsGcP3mRNMols1Kq3J7nq6dpHFlwAA5BAZjgAlTBDaiBOsDgATyBF/CqPWrP2pv2PmvNaOnMPvgD7eMbbLmWBw==</latexit>

ak(K) = (K2 →K + 1)k(K2 → 2K + 1)

: Cumulative distribution function of   

the Fisher–Snedecor distribution

<latexit sha1_base64="ZL8Na+/+kjV4Dn7XAmxR2ifTrRw="></latexit>

P (ω,K) =
K→1∏

k=2



1→
(
1→ F

(
3ω2 + 1/2

3ω2
, k, k

)ak(K)
)K→k





<latexit sha1_base64="xMTNeafwLYGCFzt2o7reMTRQO9g=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBEqlDJTpLosCOKygn1AO5ZMmmlDM5khyahl6H+4caGIW//FnX9jpp2Fth64l8M595Kb40WcKW3b39bK6tr6xmZuK7+9s7u3Xzg4bKkwloQ2SchD2fGwopwJ2tRMc9qJJMWBx2nbG1+lfvuBSsVCcacnEXUDPBTMZwRrI91fl57KaNx30lY96xeKdsWeAS0TJyNFyNDoF756g5DEARWacKxU17Ej7SZYakY4neZ7saIRJmM8pF1DBQ6ocpPZ1VN0apQB8kNpSmg0U39vJDhQahJ4ZjLAeqQWvVT8z+vG2r90EyaiWFNB5g/5MUc6RGkEaMAkJZpPDMFEMnMrIiMsMdEmqLwJwVn88jJpVStOrVK7PS/Wy1kcOTiGEyiBAxdQhxtoQBMISHiGV3izHq0X6936mI+uWNnOEfyB9fkDoXCQmQ==</latexit>

F (x, k1, k2)

Caveat: derived with several independence assumptions that are not fully justified
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Caveat: derived with several independence assumptions that are not fully justified, 
but they seem to hold in practice … (see discussions)

BAECHLER et al.: SUPER RESOLUTION PHASE RETRIEVAL FOR SPARSE SIGNALS 4847

Once more, we assume that all these selections are indepen-
dent to obtain

P

(
g(c, X̂k)

g(w, X̂k)
< 1

)
=
∏

π∈Mk

P

(
g(c, X̂k)

e(w,π, X̂k)
< 1

)
. (28)

Finally, we discuss the probabilistic aspects of (27). The terms
ω, x̂i and πi are each made of the difference between two points
plus a noise value. Indeed, they have the form

p = xi − xj + νi,j ,

for some specific indices i and j. Assuming that the points in
X are uniformly distributed between −0.5 and 0.5, and the
noise elements νi,j are independent and identically distributed
as Gaussian random variables with zero mean and variance σ2

(as previously discussed in Section III), we can approximate (27)
as

e(w,π, X̂k)
(a)
≈

k∑

!=1




6∑

i=1

Yi +
3∑

j=1

Zj




2

(b)
≈

k∑

!=1



W +
3∑

j=1

Zj




2

=

(
3σ2 +

1

2

)
Q(2)

k , (29)

whereQ(2)
k ∼ χ2

k,Yi ∼ U [−0.5, 0.5],Zj ∼ N (0,σ2) andW ∼
N (0, 1

2 ). In (a), we approximate the sum by assuming indepen-
dence between all the random variables and in (b) we approxi-
mate the sum of six random variables uniformly distributed on
[−0.5, 0.5]with a normal random variable with varianceσ2 = 1

2 .
We now have all the ingredients to compute the probability

of success at iteration k (23), as

Pk(σ,K) = 1−
∏

c∈Ck

(
1−

∏

w∈W
P

(
g(c, X̂k)

g(w, X̂k)
< 1

))

≈ 1−
∏

c∈Ck

(
1−

∏

w∈W

∏

S∈Mk

P

(
Q(1)

k

Q(2)
k

<
3σ2 + 1

2

3σ2

))

= 1−



1− P

(
Q(1)

k

Q(2)
k

<
3σ2 + 1

2

3σ2

)|Mk ||W|



|Ck |

= 1−
(
1− F

(
3σ2 + 1

2

3σ2
, k, k

)|Mk||W|)|Ck |

, (30)

where F(x, k1, k2) is the cumulative distribution function of an
F-distribution with parameters k1 and k2; it can be calculated
using regularized incomplete beta functions. Last, we determine
the size of the sets as

|Ck| = K − k,

|W| = N −K = K2 − 2K + 1,

|Mk| = Nk. (31)

Fig. 5. Comparison of the (a) theoretical and (b) empirical probability of
success for Algorithm 1 in 2 dimensions with respect to the size of the problem
K and the noise σ affecting the set of differences. In both plots, the white line
represents P (σ,K) = 0.5.

Note that as the number of points K increases, these exponents
grow faster and push any probability that is not 1 to 0; hence,
we expect a steep phase transition.

Along the path of our analysis, we made a few rough as-
sumptions that we cannot theoretically justify regarding the
independence of events, e.g. in (22), (23) and (28). While we
would like to be more rigorous, we provide below numerical ev-
idence that such assumptions hold in practice as the algorithm’s
performance exhibits a phase transition matching closely the
derived theoretical bound (30). Swiss A

A. Numerical Simulations

We define the index-based error as a binary metric that is equal
to 0 if the solution set X̂ is of the form (7), and 1 otherwise.
This error can be used to empirically measure the probability of
success of Algorithm 1: we approximate it by running several
experiments with different levels of noise σ and numbers of
points K. In Fig. 5, we report the results of such an experiment
and compare it with our theoretical result obtained in (30). We
confirm that P (σ,K) exhibits a sharp phase transition—we can
identify pairs (K,σ) for which the algorithm always succeeds
and pairs for which it always fails. However, the empirical
phase transition is less sharp than the theoretical one and this is
probably due to our approximations regarding the independence
of events. Nonetheless, the two phase transitions are closely
aligned for each value of K.

In the following, we develop some intuition that may explain
why these approximations appear to be so tight. We claim that,
even though not all events are pairwise independent, most of
them are. As an example, when we look at

g(p, X̂k) =
∑

x̂∈X̂k

min
d̃∈D̃

(
p− x̂− d̃

)2
, (32)

for two different values p1 and p2 of p, the respective cost
functions g(p1, X̂k) and g(p2, X̂k)probably share a few common
differences d̃. However, we observe that at round k, only k
out of K2 − 2K + 1 differences are selected, one for every
x̂ ∈ X̂k. Then, assuming that most pairs (g(p1, X̂k), g(p2, X̂k))



Complexity analysis

Ph
as

e 
re

tri
ev

al

M
ar

tin
 V

et
te

rli

21

BAECHLER et al.: SUPER RESOLUTION PHASE RETRIEVAL FOR SPARSE SIGNALS 4845

Fig. 3. Examples of our algorithm in 1 dimension for different values of K and different noise regimes: (a) original points; (b) corresponding continuous ACF;
(c) discrete noisy ACF with 100 samples (sinc sampling kernel used); (d) output of the FRI-based super-resolution algorithm; (e) result of the support recovery
algorithm.

V. COMPLEXITY ANALYSIS

Algorithm 1 has K rounds. In each of these rounds, we
go through all points in the existing solution set X̂k, and for
each point we compute the difference with all the values in D̃.
Since there are O(K) points in X̂k and O(K2) elements in
D̃, this is done in O(K3) operations. Furthermore, for each of
these computed differences, we need to find the closest element
in D̃, which requires additional O(K2) comparisons. In total,
the complexity of our algorithm is O(K6). Even though this
is high and limits the field of application to reasonable sizes,
it compares favorably to an exhaustive search strategy, which
grows exponentially with K.

It is possible to trade time complexity for storage complexity.
Indeed, we observe that we compute at each round the following
values

d̃i,j = argmin
d̃∈D̃

‖pj − x̂i − d̃‖2, (18)

for every point x̂i ∈ X̂k and candidate pj ∈ Pk. However, since
we are just moving one element from Pk to X̂k+1 at each
iteration, we propose to cache the values (18) in a lookup table
to reduce the total computational cost. By doing so, we only
need to update each d̃i,j when the corresponding candidate pj

is removed from Pk to be added to X̂k+1.
The theoretical complexity when caching d̃i,j is not trivial to

analyze, but in practice we notice a significant improvement, as
illustrated in Fig. 4.

Fig. 4. Comparison of the average run time of the original algorithm and its
cached version. The times reported are the average of 100 runs of the algorithm.
The dashed lines represent curves of the form CKα that are fitted to the data.
For the method without caching, we haveC = 4.25 · 10−6 andα = 5.06, while
for the method with caching we have C = 3.88 · 10−6 and α = 4.37. Remark
how the caching is reducing the polynomial degree of the computational cost by
approximately one.

VI. PERFORMANCE ANALYSIS

In what follows, we study the expected performance of Algo-
rithm 1 in the presence of noise.

More precisely, we model the probability that Algorithm 1
finds the correct solution as a function of the noise variance σ2

and the number of elements K to characterize its performance.
We consider a one-dimensional problem, that is D = 1, to
lighten notation and simplify the discussion. However, all the

Computational complexity: worst case  
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Charge flipping: a standard benchmark algorithm in crystallography

Oszlányi and Sütő, “Ab initio structure solution by charge flipping,” Acta Crystallographica Section A, 60(2), 
134–141 (2004)

Fourier domain:

<latexit sha1_base64="g9ddXk5v3080P6m8Idq3LaCwYQw="></latexit>

Fn+1(ω) = |Fobs(ω)|
Fn(ω)

|Fn(ω)|

Space domain:
<latexit sha1_base64="N4v+tsPSYK74lZFxDeccMNq/i+U="></latexit>

fn+1(x) =






fn(x), if fn(x) > ω

→fn(x), if 0 < fn(x) < ω

0, if fn(x) < 0
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Fig. 8. PR pipeline for Charge Flipping and our algorithm. First the signal a(x) is sampled and we observe the magnitude of its DFT,Am, which also corresponds
to a discrete version of its ACF. These DFT coefficients are directly used by Charge Flipping to recover a discretized support of f(x). Our approach proceeds in
two stages: first, using FRI we compute a super-resolved version of the ACF, and then by applying the proposed algorithm, we recover the continuous version of
f(x).

Fig. 9. Comparison of our algorithm with Charge Flipping. The performance
is evaluated for K = 5 1D points chosen uniformly at random from [0, 1]. The
number of DFT coefficients is 200. Figure (a) shows the !2 reconstruction error
on the locations for different values of the input SNR. Figure (b) reports the
percentage of success: we consider that the algorithms fail when the resulting
!2 error is larger than some threshold 0.04.

is a constant around 1-1.2 and θ is the standard deviation of the
measured signal. Our experiments showed that progressively
decreasing the value of δ also improves the performance of
Charge Flipping. This mimics the behavior of the simulated
annealing algorithm, where the temperature is steadily decreased
until convergence.

Then, given noisy DFT coefficients as input, we compare the
#2 error on the support of the points for both algorithms, as
well as a probability of successfully recovering the support.
To define the latter, we say that an algorithm fails when the

#2 error is higher than a specific threshold. Fig. 9 shows that
our FRI super-resolution algorithm surpasses Charge Flipping
in terms of both metrics. It is not surprising that our algorithm
exhibits a superior performance in a low noise regime—it even
achieves exact reconstruction in the absence of noise—since
it is not bound to a grid. On the other hand, Charge Flipping
always suffers from approximation errors due to the implicit
discretization: in the noiseless case and for a grid of size 200,
we calculate that the expected #2 error on the support of K = 5
points is about 0.0056, which is in adequacy with the baseline
observed in Fig. 9a. Simulations also indicate that our algorithm
outperforms Charge Flipping in high noise environments. In-
deed, the reconstruction error is consistently lower and its phase
transition compares favorably as well.

X. CONCLUSION

We presented a novel approach to solve the phase retrieval
problem for sparse signals. While conventional algorithms op-
erate in discretized space and recover the support of the points
on a grid, the power of FRI sampling combined with the sparsity
assumption on the signal model enables to recover the support
of the points in continuous space. We provided a mathematical
expression that approximates the probability of success of our
support recovery algorithm and confirmed our result via numer-
ical experiments. We observed that while our algorithm runs
in polynomial time with respect to the sparsity number of the
signal, it remains relatively costly. To alleviate the computational
costs without impacting the quality of the reconstruction, we

K = 5 atoms with locations chosen uniformly from [0, 1]

Number of DFT coefficients = 200
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A bit of history: AI and IT 
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C.E. Shannon 
A Mathematical Theory of Communication (1948)
Small Language Model:

THE HEAD AND IN FRONTAL ATTACK ON AN 
ENGLISH WRITER THAT THE CHARACTER OF 
THIS POINT IS THEREFORE ANOTHER METHOD 
FOR THE LETTERS THAT THE TIME OF WHO 
EVER TOLD THE PROBLEM FOR AN 
UNEXPECTED
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Creating a new research paper with a few prompts in Gemini (Baechler 2025)
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Gemini 2.5 Pro with Deep 
Research: 
• 1 model to craft the prompts
• 1 model to perform the 

research
• Overall, it took 1-2 hours to 

create a full paper

Meta prompting (because 
writing your own prompts is 
tedious ;-))
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Step by step: 
1. Ask Gemini (in Deep Research mode) to analyze our TSP 

paper and write a research plan for a follow up paper.
2. Generate latex code and fill in an IEEE .tex template.
3. There were 3 placeholder figures in the generated .tex, 

ask it to generate the python code to create the figures.
4. Generate the figures within a colab.
5. Last, one more pass to improve the manuscript.

Human intervention: 
1. There were only a few minimal errors in the generated .tex

and .py files:
o The model got all references correctly, except for one.
o The python and tex code were flawless, except for:

§ 1 mistake regarding the pyplot axes.
§ 1 issue with the latex document class that was 

causing rendering errors
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Key Challenges
• Non-Gaussian and correlated noise
• Non-ideal scattering kernels
• Propagation of errors to later stages
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Different cost functions
• l2
• l1
• Huber loss

Enhanced greedy algorithm
• Initialize with 0 and largest norm difference
• Compute candidate points P from current solution X̂
• Evaluate configuration hardness metric for D̃ and X̂
• Dynamically select strategy based on hardness metric
• Add next point using robust cost function minimization
• Repeat until K points are recovered
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Key Challenge
• Original algorithm has O(K4.37) complexity 
• Hard trade-off between denoising and caching
• Bottleneck for large-scale problems 

(e.g., cryo-EM with K > 1000)

Adaptive Denoising/Caching Strategy
• Dynamic decision mechanism based on:
- Real-time noise estimates
- Iteration number (early vs. late)
- Available computational budget
• Prioritizes denoising when noise is high
• Favors caching when noise is low
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1. Will AI replace researchers?

2. I trust my (former) graduate students, not sure about AI…

3. It is like driving a Ferrari… without the hands on the wheel!

4. Is AI simply averaging what is out there (reversal to the mean)?

5. I still believe in originality, but then….

6. Epistemology of AI?

Fortunately there are deep thinkers like Albert Cohen…

Thank you Albert for all your contributions and friendship!
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… my coauthors Gilles Baechler, Miranda Krekovic, Juri Ranieri, 
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Le Mot de la Fin:
Thank you, Albert!


