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B Phase retrieval

The original paper

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 18, SEPTEMBER 15, 2019 4839

Super Resolution Phase Retrieval for Sparse Signals

Gilles Baechler ', Student Member, IEEE, Miranda Krekovi¢ ', Student Member, IEEE, Juri Ranieri,
Amina Chebira, Yue M. Lu ", Senior Member, IEEE, and Martin Vetterli ", Fellow, IEEE
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Phase Retrieval Process: Recovering signal from magnitude-only measurements
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B Phase retrieval

State of the art, 6 years later...

MV: | work on phase retrieval from Fourier magnitude, can you help me?

Mistral Le Chat output:

1. Gerchberg-Saxton Algorithm
Fienup Algorithm

Convex Relaxation

Deep Learning

Compressed Sensing

ok owbd

I am interested in the case when the signal is sparse in time domain, like
a sequence of Dirac pulses at arbitrary locations

M: Example: Compressed Sensing Approach

1. Formulate the Problem:
min ||z||; subjectto |Fz|=1»

where x is the sparse signal, F' is the Fourier transform matrix, and b is the measured Fourier
magnitude.

ADMM etc

~
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State of the art, 6 years later...

MV: Let me formulate the problem: ... our algorithm estimates the signal on a continuous domain,

which makes it the first of its kind.

M:

Signal Model: Clearly define the signal model, assuming it is sparse in the time domain. For
example, the signal m(t) can be represented as:

K
z(t) = ard(t —t)
k=1

where ay, are the amplitudes, t;, are the locations of the Dirac pulses, and K is the number of
pulses.

Three-Stage Algorithm

Stage 1: Super-Resolution of the Auto-Correlation Function

Finite Rate of Innovation (FRI) Sampling: Use FRI sampling theory to super-resolve the
auto-correlation function from a limited number of samples. This involves:

Sampling: Acquire samples of the auto-correlation function at a rate sufficient to capture
the innovation rate of the signal.

Reconstruction: Use reconstruction algorithms to recover the continuous auto-
correlation function from the samples.

efc....
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State of the art, 6 years later...

MV: is there previous work | can cite, and by which authors?

M: Certainly... the usual suspects, Gerchberg-Saxton, Fienup,
convex relaxation, compressed sensing, FRI etc and...

Goy, A. P, Liu, C., & Vetterli, M. (2019). "Deep Learning for Phase Retrieval." IEEE Signal
Processing Magazine, 36(4), 18-39.

MV: | think there is a paper entitled "Super Resolution Phase
Retrieval for Sparse Signals" which could be relevant?

@ Yes, the paper titled "Super Resolution Phase Retrieval for Sparse Signals" is indeed relevant
to your work. This paper focuses on the phase retrieval problem for sparse signals and
proposes methods to achieve super-resolution. Here are the details:

Paper Details

Title: Super Resolution Phase Retrieval for Sparse Signals
Authors: Yonina C. Eldar, Shahar Nevo, and Eran Treister

Publication: IEEE Transactions on Signal Processing, 2018

©
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Sparse phase retrieval: problem formulation

How to reconstruct a sparse signal

flx) = Z cro(x — xk)

from the magnitude of its Fourier transform |F(w)|? ?

Applications:
« X-ray crystallography, diffractive imaging, ... sample
« Speckle imaging

* Blind deconvolution and channel estimation

diffraction pattern
recorded in the far field

« Spectral factorization

Fig credit: Stanford SLAC
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Problem formulation in the Fourier domain

K-sparse signal

K

f(x) = Z cro(x — x))

k=1

Fourier
transform

K
_' —l—
= g cpe 7Y Tk
k=1

Auto-correlation function

K K
Zchcﬁ T — xk—:cg))

k=1 ¢=1

Fourier
transform

Fourier
magnitude

————> |F(w)]?
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A proposed three-stage approach

Equivalent problem:

Estimate the support {Zx }x<x and weights {ck } <k from (samples) of the Fourier transform

of the auto-correlation function (ACF)

Step 1: we leverage the finite rate of innovation sampling theory to super-resolve the ACF
from a limited number of samples

Step 2: we design a greedy algorithm that identifies the locations of a sparse solution given the
super-resolved ACF

Step 3: we recover the amplitudes of the atoms given their locations and the measured auto-
correlation function.

(=Y
w
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Step 1: super-resolve the ACF via finite-rate-of-innovation
K K
Observation: The ACF a(x Z Z CkC£5 x — (zx — xe)) is still a sparse function,
k=1 (=1
containing K2 — K + 1 atoms.
K @) > ACF K =) > scattering i = > sampling R - >

Finite-rate-of-innovation sampling [Vetterli, Marziliano, Blu, 2002]

» Super-resolution techniques from limited samples, with connections to spectral analysis
techniques (e.g. Prony’s method)

«  Sample complexity for ACF: O(K?) samples [Pan, Blu, and Vetterli, 2018]
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Problem formulation:

Estimate the locations of the atoms Z1,Z2, ..., Tk from the set of pairwise differences X = {x, — zo} ¢

Challenge: the difference set X' is unlabeled Turnpike Problem

Skiena and Sundaram, “Reconstructing sets from interpoint distances,” 0 1
in Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 1995.

B Phase retrieval
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B Phase retrieval

A greedy approach:

Algorithm 1: Support Recovery.

=
(=2}

Martin Vetterli

Input: A set of N = K? — K + 1 differences D=
{d,}N_, ordered by their norms

Output: A set of K points X such that their pairwise

differences generate D

X, ={0,dy}

Py =D\ {d1,dn}

fork=2,...,K —1do , I
Tpi1 :argminzae)?k mingeﬁHp—i—cﬂ’ o
N
Xpp1 = X Uy
Prt1 = Pr \ Tit1

(@] (@]
©
@ T3
#©
Iy °
©
L4

end for R
return Xy




EPFL

B Phase retrieval

Step 3: recover the amplitudes of the atoms

Auto-correlation function

a(x) = > cpeid(w — (zp — )

=1/4=1

Equivalent formulation:

Estimate the missing diagonal entries of a

rank-one symmetric matrix C = (cic; : 1 <14,j < K)

Amplitude recovery:

Estimate c1,...,ck from crce for k # 4

A matrix completion problem!

(=Y
~
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Step 3: recover the amplitudes of the atoms

Matrix completion: Estimate the missing diagonal entries of a rank-one symmetric matrix

A closed-form solution: Let ¢ = [log(c1), ..., log(cx)]"
Define L;; = log(Cy;) = log(c;) + log(c;)  for 4 75.]
0 otherwise

=
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Performance analysis and phase transitions

Probability of successfully reconstructing K atoms at noise level o

K—1 5 ar(K)\ K—F
1/2
P(o,K) =[] 1—(1—F(303%,k,7€) )

k=2

CDF of the Fisher-Snedecor (F) Distribution
where e e

— k1 =5,k =2
— k;=10, k=5
0.8} —— ki =20, k=10

ap(K) = (K? — K + 1)*(K? - 2K +1)

CDF

0.4}

F(z, k1, ke): Cumulative distribution function of

0.2

the Fisher—-Snedecor distribution

0.0f

Caveat: derived with several independence assumptions that are not fully justified

(=3
©
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Performance analysis and phase transitions

(a) Theoretical P(o, K) (b) Empirical P(o, K)
= 1.0
10"
0.8
-2
; 10
S
Z
107
10"

10 20 30 40 50 60 10 20 30 40 50 60
K K

Caveat: derived with several independence assumptions that are not fully justified,
but they seem to hold in practice ... (see discussions)
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Computational complexity: worst case O(K®°)

N
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without caching
5| —&— with caching

4
o
)
=3
© Time: O(K°%)
£
2
1 Time (with

caching):O(K*37)
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B Phase retrieval

Charge flipping: a standard benchmark algorithm in crystallography

Fourier domain: Space domain:
fu(z), if fo(x) >4§
Foi1 (@) = | Fapal(e)] o2 (— farr(€) = 4 —ful@), 0 < ful@) <
Fa ()] 0 if f,.(z) <0

Oszlanyi and Sutd, “Ab initio structure solution by charge flipping,” Acta Crystallographica Section A, 60(2),
134-141 (2004)

N
N
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Comparison with the state-of-the-art

(a) Average error (b) Probability of success
0.4
Charge Flipping 1.0
== Qur algorithm N
0.2
0.5
0.0 0.0 \"
30 20 10 0 -10 -20 30 20 10 0 -10 -20

SNR (dB) SNR (dB)

K = 5 atoms with locations chosen uniformly from [0, 1]
Number of DFT coefficients = 200

N
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What does Al tell us to do now?

Creating a new research paper with a few prompts in Gemini (Baechler 2025)

Gemini

2.5 Pro (preview) v

Super_Reso...ignals (1)

PF PDF
7 **You are a highly distinguished scientist, a leading
expert in the field relevant to the provided research

paper, possessing a sharp analytical mind, a deep...

Show thinking v

Okay, | have reviewed the provided research paper, "Super Resolution Phase Retrieval for Sparse

Signals" by Baechler et al. Here's my critical analysis and a proposal for a follow-up research

paper.

I. Critical Analysis of the Provided Paper

Core Research Question/Hypothesis:

The central research question is whether it's possible to accurately recover a sparse signal,
defined by a set of locations and amplitudes on a continuous domain, from the magnitude of its
Fourier transform (FT) samples, particularly in the presence of noise. The implicit hypothesis is
that their proposed three-stage algorithm, leveraging Finite Rate of Innovation (FRI) theory for
super-resolving the auto-correlation function (ACF) and a novel greedy approach for support
recovery, can achieve this “super-resolution phase retrieval” more effectively than existing
methods that typically assume a discrete domain or lack noise robustness. @

@

Key Methodologies:
The paper proposes a three-stage algorithmic pipeline:
1. ACF Super Resolution: This stage reconstructs the continuous ACF, (l(.’l?), from a limited
number of its discrete Fourier samples, A,,. It employs FRI sampling theory, recasting the
problem as parameter estimation (locations z;, — x; and amplitudes ci.c;) from the FT of the

ACF. Prony's method or similar spectral estimation techniques are used to find the locations

PHASE SHIFT: ADAPTIVE SUPER-RESOLUTION FOR ROBUST PHASE RETRIEVAL

Jay Mini

Department of Signal Processing and Inverse Problems,
Swiss Federal Institute of Technology (ETH Zurich), Switzerland

ABSTRACT

Phase retrieval (PR) is a critical inverse problem across di-
verse scientific and ineering ins, particularly for
sparse signals defined on a continuous domain. While recent
advancements have enabled super-resolution PR, existing
methods often struggle with non-ideal noise characteristics,
non-sinc scattering kernels, and inherent ambiguities aris-
ing from specific geometric configurations of sparse points.
Furthermore, a fundamental trade-off between reconstruction
quality and computational complexity limits scalability for
large-scale problems. This paper presents a novel, adaptive,
and robust framework for super-resolution phase retrieval.
Our methodology introduced advanced statistical noise mod-
eling and kernel learning for the auto-correlation function
(ACF) super-resolution stage, coupled with a configuration-
aware, robust greedy algorithm for support recovery that
dynamically adapts to challenging point geometries. We also
developed a hybrid quality-complexity optimization strategy,
leveraging parallelization and deep learning-based surrogate
models to enhance scalability. Simulated results demon-
strated significant improvements in reconstruction accuracy
under realistic noise, enhanced robustness to geometric ambi-
guities, and superior scalability for larger numbers of sparse
elements. This work represents a substantial step towards
deploying continuous-domain phase retrieval in demanding
applications like cryo-electron microscopy and advanced op-
tical imaging.

Index Terms— Phase retrieval, super-resolution, sparse
signals, robust estimation, machine leamning, inverse prob-
lems, finite rate of innovation.

1. INTRODUCTION

The problem of phase retrieval (PR), where one seeks to re-
construct a signal from the magnitude of its Fourier Trans-
form (FT), is ubiquitous in fields ranging from X-ray crystal-
lography and optical imaging to astronomy and communica-
tions [1-3]. The inherent ill-posedness of PR necessitates the
incorporation of prior information or constraints to achieve a

This work is supported by the European Research Council (ERC) Ad-

vanced Grant "PHASE-SHIFT” under grant agreement No. 101054321 and
the Swiss National Science Foundation (SNSF) project "ROBUST-FRI”.

unique and accurate solution. A particularly compelling prior
is signal sparsity, where the signal can be represented as a
finite sum of a few atomic components [4, 5].

Traditional PR algorithms, such as Charge Flipping [6],
typically operate on discrete grids, leading to inherent dis-
cretization errors and limiting the achievable resolution. Re-
cent groundbreaking work has introduced algorithms capable
of super-resolution phase retrieval for sparse signals on a con-
tinuous domain, leveraging Finite Rate of Innovation (FRI)
sampling theory [7, 8]. These methods promise theoretically
infinite resolution, constrained only by measurement noise.
The work by Baechler et al. [8] (hereafter referred to as "the
original paper”) notably demonstrated a three-stage pipeline
that achieves robust continuous-domain recovery in the pres-
ence of significant noise, outperforming discrete-grid meth-
ods like Charge Flipping.

Despite these advancements, several critical limitations
hindered the widespread practical depl of i S
domain sparse PR. Firstly, the theoretical performance analy-
sis and algorithmic design often relied on idealized assump-
tions regarding noise characteristics (e.g., i.i.d. Gaussian
noise) and scattering kernel functions (e.g., ideal sinc func-
tions) [8]. In real-world scenarios, noise is complex, non-
Gaussian, and correlated, and scattering functions are rarely
ideal, leading to performance degradation. Secondly, the
original paper identified that certain geometric configurations
of sparse points intrinsically led to higher reconstruction
errors, even with noise resilience improvements [8]. The
greedy support recovery algorithm did not inherently adapt to
these "challenging patterns,” resulting in reduced reliability.
Finally, a fundamental trade-off existed between applying
denoising strategies (which improve quality) and caching
mechanisms (which improve computational speed) [8]. Fur-
thermore, while polynomial, the computational complexity
of O(K*37) for K sparse elements remained a bottleneck
for very large-scale problems, such as those encountered in
cryo-electron microscopy of complex macromolecules.

This paper presents a novel, adaptive, and robust frame-
work for super-resolution phase retrieval that directly ad-
dresses these limitations. Our contributions are threefold:

1. We developed a robust ACF super-resolution stage that

explicitly models and p for non-Gaussian/cor

N
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EPFL  Creating a paper with Gemini

Gemini 2.5 Pro with Deep Can you write a solid prompt to a model along the lines

Research: oF

* 1 model to craft the prompts You are one of the best scientists in the world. Can you

. 1 model to perform the analyze the following paper and propose a follow up
research paper?

* Overall, it took 1-2 hours to
create a full paper SRR

Prompt for Advanced Scientific Paper Analysis and Follow-Up Proposal

Meta promptlng (because Here is a robust prompt designed to guide an Al model, acting as a world-class scientist, in
Writing yOUI’ own prompts is analyzing a scientific paper and proposing a compelling follow-up study:

tediOUS ;')) Prompt:

*kYou are a highly distinguished scientist, a leading expert in the field relevant
**%I. Critical Analysis of the Provided Paper:*x*
Please meticulously analyze the provided scientific paper. Your analysis should be

**Core Research Question/Hypothesis:** Clearly identify and articulate the centr:
*xKey Methodologies:** Describe and evaluate the primary methodologies employed.
**Salient Findings and Conclusions:** Summarize the most important findings and f
*kStrengths of the Paper:** Identify the paper's significant contributions, inno»
**Weaknesses and Limitations:** Critically assess the paper's weaknesses, limitat

B Phase retrieval

**Contextual Understanding:** How does this paper fit into the broader context of
*kImpact and Significance:** Evaluate the potential impact and significance of ti
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Creating a paper with Gemini

"
Step by Step. 12 Error of Super-Resolved ACF under Different Noise Models

1. Ask Gemini (in Deep Research mode) to analyze our TSP T Vevosednobust
paper and write a research plan for a follow up paper.
Generate latex code and fill in an IEEE .tex template.
There were 3 placeholder figures in the generated .tex,
ask it to generate the python code to create the figures.
Generate the figures within a colab.

Last, one more pass to improve the manuscript.

@ N

12 Error of Super-Resolved ACF

o &

-10 -5 0 5 10 15 20 25 30
Input SNR (dB)

Human intervention:
1. There were only a few minimal errors in the generated .tex
and .py files:
o The model got all references correctly, except for one.
o The python and tex code were flawless, except for:
» 1 mistake regarding the pyplot axes.
= 1 issue with the latex document class that was
causing rendering errors
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Quick overview: Limitations of Original Work

Key Limitations in Baechler et al. [8]

Idealized Noise Assumptions

» Assumed i.i.d. Gaussian noise
» Real-world noise is complex, non-Gaussian, and correlated
» Performance degradation in practical scenarios

Geometric Ambiguities

» Certain point configurations lead to higher errors
» Greedy algorithm not adaptive to "challenging patterns"
» Reduced reliability for specific geometries

Non-Sinc Scattering Kernels

» Assumed ideal sinc function as scattering kernel
» Scattering functions rarely ideal in practice
» Limited accuracy in real applications

Computational Complexity

» Trade-off between quality (denoising) and speed (caching)
» O(K*37) complexity for K sparse elements
» Bottleneck for large-scale problems (e.g., cryo-EM)

N
©
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Three Key Contributions

1 Robust ACF Super-Resolution

Advanced statistical noise modeling and kernel learning for the auto-correlation function (ACF) super-resolution stage, enhancing
accuracy under realistic conditions with non-Gaussian noise and non-ideal kernels.

2 Adaptive & Robust Support Recovery

Configuration-aware, robust greedy algorithm for support recovery that dynamically adapts to challenging point geometries, improving
reliability in ambiguous scenarios.

3 Hybrid Quality-Complexity Optimization

Adaptive denoising/caching strategy with parallelization and deep learning-based surrogate models to significantly improve scalability for
large K while maintaining high reconstruction quality.

Performance Improvement Across Pipeline Stages
100
80
60
40
20

Performance Score (%)

Stage 1: ACF Super-Resolution Stage 2: Support Recovery Stage 3: Amplitude Recovery

Original Pipeline [l Our Enhanced Pipeline

w
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Probability Density

Robust ACF Super Resolution

Key Challenges

* Non-Gaussian and correlated noise

* Non-ideal scattering kernels

* Propagation of errors to later stages

Comparison of Noise Distribution Models

3 25 -2 -15 -1 05 O 05 1 15 2 25 3

Error Value

Gaussian (Original) [___] Student's t (v=3) [_] Kernel Density Estimate

Amplitude

Mean Squared Error

1.0
0.8
0.6
0.4
0.2

Comparison of Scattering Kernel Functions

A

0 © = e e

-0.2
o o

0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

P Do Vo ML O Ve Ve 0

% v Vv

Position

Ideal Sinc Kernel (Original) [_] Learned Gaussian Kernel

[ Learned Airy Disk Kernel

w
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Vetterli

Reconstruction Error Under Different Kernel Conditions

Ideal Conditions Gaussian Kernel Airy Disk

Original Method (Fixed Sinc) [l Our Method (Adaptive)

Mixed Kernels
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Adaptive Support Recovery: Robust Cost Functions

Different cost functions

* /2
/1

* Huber loss

Enhanced greedy algorithm

Initialize with 0 and largest norm difference

Compute candidate points P from current solution X
Evaluate configuration hardness metric for D and X
Dynamically select strategy based on hardness metric
Add next point using robust cost function minimization
Repeat until K points are recovered

Dynamic Strategy Selection by Configuration Hardness

Success Rate (%)
wn
o

Low Ambiguity Moderate Ambiguity High Ambiguity
I Standard Greedy [ Multi-Start Greedy [ Randomized Search

Cost Value

Success Rate (%)

10

(=] N EN o [

100

80
70
60
50
40
30
20
10

0

Comparison of Cost Functions

v

Error

12Norm [ 1* Norm [___] Huber Loss (5=1.5)

Recovery Success Rate (%) by Noise Type

Gaussian Noise

Heavy-tailed Noise Mixed Noise

12 Norm (Original) [N * Norm [ Huber Loss

Outliers Present

w
N
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Hybrid Quality-Complexity Optimization

Key Challenge
« Original algorithm has O(K*37) complexity
» Hard trade-off between denoising and caching
* Bottleneck for large-scale problems
(e.g., cryo-EM with K > 1000)

Adaptive Denoising/Caching Strategy

* Dynamic decision mechanism based on:
- Real-time noise estimates

- Iteration number (early vs. late)

- Available computational budget

* Prioritizes denoising when noise is high
» Favors caching when noise is low

Relative Computation Time

Reconstruction Quality

33
E}
>
Computational Complexity vs. Number of Sparse Elements (K)
1,000,000,000
10,000,000
100,000
1,000
10
AR
Number of Sparse Elements (K)
Original Algorithm : Adaptive + Parallel : With Surrogate Models
Quality-Speed Trade-off
1.00
0.95 . . .
0.90 ® o PN
0.85
0.80
0.75
0.70
0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Computational Speed

Original (Fixed Strategy) [ Our Approach (Adaptive) [ With Surrogate Models
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Concluding words

1. WIll Al replace researchers?

2. | trust my (former) graduate students, not sure about Al...

3. ltis like driving a Ferrari... without the hands on the wheel!

4. |Is Al simply averaging what is out there (reversal to the mean)?
5. | still believe in originality, but then....

6. Epistemology of Al?

Fortunately there are deep thinkers like Albert Cohen...

Thank you Albert for all your contributions and friendship!

w
(3]

Martin Vetterli



=PrL

B LIPPMANN PHOTOGRAPHY: the art and science of multispectral imagery

Thanks to ...

... the organisers for inviting me.

... my coauthors Gilles Baechler, Miranda Krekovic, Juri Ranieri,
Amina Chebira, and Yue M. Lu

... Support by ERC and Swiss NSF Grant,

w
(=]

Martin Vetterli



Le Mot de la Fin:
Thank you, Albert!




