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The problem

Assume that you want to recover an arbitrary vector x ∈ Rm, up to
some error ε > 0 in some norm ∥ · ∥, where m ∈ N can be large.

You know nothing about x , you can only compute certain
measurements λ1(x), . . . , λn(x) ∈ R that you can choose.

How many measurements do you need?

(We do not assume a bound on a norm of x yet.)
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Linear information

Less than m linear measurements are useless.

Proof:
Let N = (λ1, . . . , λn) with n < m, where the λk are linear functionals.

Then, for y = N(x), there is a whole affine subspace V of Rm with
dim(V ) ≥ m − n such that N(v) = y for all v ∈ V .

So no matter how you choose your approximation x̂ = Φ(y) ∈ Rm,
you may be arbitrarily far away from the true value of x .
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Continuous information

The same is true for any continuous measurement map N : Rm → Rn.
This follows from the Borsuk-Ulam theorem:

Borsuk-Ulam theorem (∼1930)
For any N ∈ C(Rm,Rn) with n < m and R > 0, there are x and x̃ at
distance 2R such that N(x) = N(x̃).

That is, you cannot distinguish between these vectors and hence
cannot guarantee an error less than R.

So, again, less than m continuous measurements are useless.
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Adaptive information

But why should we fix the measurement maps λk in advance?

It is probably better to use the already obtained information
λ1(x),. . . , λk−1(x) and choose λk based on it.

We call such measurements adaptive.

(Precisely, we allow λk(x) = λk(x ; λ1(x), . . . , λk−1(x), λ1, . . . , λk−1).)
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Adaptive linear information

“Unfortunately”, the fact remains that

less than m linear measurements are useless,
also if we choose them adaptively.

Proof:
As before, for y = N(x), there is a whole affine subspace V ⊂ Rm

such that λj(v) = yj for all j ≤ n < m and v ∈ V .

Thus, for any v ∈ V , you would have chosen the same functionals λj

and obtained the same information y = N(v).

Hence, you cannot distinguish between all the elements of V .
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Adaptive continuous information

The remaining case:

Can we achieve something with less than m
adaptively chosen continuous measurements?

History: When we started to work on this problem with David Krieg
and Erich Novak during the summer 2024, we studied the “simplest
example” x ∈ {x ∈ R3 : ∥x∥2 ≤ 1}, i.e., m = 3, and n = 2.
Starting with the functional ℓ1(x) = x1 − |x3|, one can improve over
all nonadaptive methods (which have worst case error 1).
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Surprisingly, log(m) measurements are enough

Theorem [Krieg/Novak/U ’25]
Let m ∈ N and ε > 0. The algorithm Rε

m described below uses at
most n(m) := ⌈log2(m)⌉ + 1 adaptive, 1-Lipschitz-continuous
measurements and satisfies for all x ∈ Rm that

∥x − Rε
m(x)∥ ≤ ε.

This implies
∥Rε

m(x) − Rε
m(y)∥ ≤ ∥x − y∥ + 2ε,

which might be considered as some kind of stability.

Again: There cannot be a continuous algorithm! (Borsuk-Ulam)
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The algorithm

The algorithm is based on a coloring of Rm in the following way:

Consider a partition
Rm =

⋃
i∈N

Di ,

a (coloring) map t : N → {1, 2, . . . , m + 1}, and some c > 0 with:
1 diam(Di) ≤ 1 for each i ;
2 if i ̸= j and t(i) = t(j) then dist(Di , Dj) ≥ c,

where diameter (diam) and distance (dist) are with respect to the
given norm on Rm.
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Colorings of Rm with separated colors

The following illustrations show two colorings of the plane with three
colors. The second is easily generalized to higher dimensions.

Less than m + 1 colors do not work.
This is related to the Nagata dimension of Rm.
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The algorithm: First stage and bisection

To find an ε-approximation of x ∈ Rm it is enough to find an index i∗

such that x is in εDi∗ . Define by

Ir := {i ∈ N : t(i) = r} and Er =
⋃
j∈Ir

εDj

the set of points with color r in the ε-scaled partition.

A continuous measurement of the form λJ(x) = dist
(

x ,
⋃

j∈J Ej

)
with

J ⊂ {1, . . . , m + 1}, tells us whether x has any of the colors in J.

We use n = ⌈log2(m + 1)⌉ = n(m) − 1 such functionals and bisection
to find a color of x , i.e., r∗ = t(i∗) with x ∈ E r∗ .
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Algorithm: Second stage

Now we can determine a correct index i∗ with x ∈ εDi∗ using any
continuous functional λ∗ for which the images λ∗(εDi) for i ∈ Ir∗ are
pairwise disjoint. An example is given by

λ∗(x) = max
i∈Ir∗

{cε

2i − dist (x , εDi)
}

.

By construction, x is in the closure of εDi∗ with i∗ = cε
2λ∗(x) .

The output Rε
m(x) of the algorithm can be any element from εDi∗ .
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Discussion

Did we really construct a clever algorithm
for the recovery of x ∈ Rm if m is large?

We made two basic assumptions:
1 If λ : Rm → R is 1-Lipschitz, then we can compute values λ(x),

i.e., all Lipschitz functionals are admissible as information.
2 The information can be chosen adaptively, i.e., λk+1 may depend

on the (already computed) values yi = λi(x) for i = 1, 2, . . . , k.

Adaption is widespread and can be easily implemented on a computer.
The use of arbitrary Lipschitz measurements is more problematic.
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Power of adaption for continuous information

We want to approximate f ∈ F in the norm of Y , where F ⊂ Y is
subset of (general) metric space Y . We allow algorithms An : F → Y
of the form

An(f ) = Φ(λ1(f ), . . . , λn(f ))

with adaptively chosen continuous measurements λi : F → R and an
arbitrary reconstruction map Φ: Rn → Y .

We consider the minimal worst-case error of algorithms that use at
most n continuous measurements, i.e.,

econt
n (F ) := inf

An
sup
f ∈F

dY
(
f , An(f )

)
,

where the infimum ranges over all adaptive An as above.
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Power of adaption for continuous information II

We compare with the manifold widths of F (in Y ), i.e.,

δn(F ) := inf
N∈C(F ,Rn)
Φ∈C(Rn,Y )

sup
f ∈F

dY
(
f , Φ(N(f ))

)
.

; minimal errors of non-adaptive “continuous algorithms”

Theorem [KNU ’25]
Let F ⊂ Y be a subset of a metric space Y and n ≥ 2. Then,

econt
n (F ) ≤ δ2n−2(F ).
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Noisy information

What if measurements are only known
up to some noise δ > 0?

Precisely, (y1, . . . , yn) ∈ Rn is the information about f ∈ F which
satisfies ∣∣∣yi − λi(f ; y1, . . . , yi−1)

∣∣∣ ≤ δ, 1 ≤ i ≤ n,

for some functionals λi( · ; y1, . . . , yi−1) : F → [−1, 1] and δ < 1.
(Interpretation: ideal measurements λi ; machine precision δ; normalization [−1, 1])

We denote by e?
n(F , δ) with ? ∈ {lin, cont, arb} the minimal error of

arbitrary algorithms using ? measurements that are noisy.
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Linear noisy information

There is lot of work and books on noisy linear measurements.

Here, we only state

elin
n (F , δ) ≥ δ for all n ∈ N.

That is, for fixed δ > 0,

there cannot be a (possibly non-linear) algorithm
based on noisy linear measurements

with error going to zero.
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Continuous noisy information

For noisy continuous measurements λi : F → [−1, 1], we obtain an
upper bound with the entropy numbers of F ⊂ Y :

εn(F ) := inf{ε > 0: F can be covered by 2n balls (in Y ) of radius ε}.

Theorem [Krieg/Novak/Plaskota/U ’25]
Let F ⊂ Y be a subset of a metric space Y , n ∈ N and δ < 1.
Then,

econt
n (F , δ) ≤ εn(F ).

upper bound is independent of δ < 1 (?!)
econt

n (F , δ) = ε0(F ) for δ ≥ 1
We did not find a “good” lower bound for econt

n (F , δ).
Mario Ullrich How many (noisy) measurements?



Recovery of vectors The algorithm Infinite dimensions and noise End

Arbitrary noisy information

We consider arbitrary (possibly non-continuous) measurements.

Here, the minimal errors are even characterized by the εn:

Theorem [Krieg/Novak/Plaskota/U ’25]
Let F ⊂ Y be a subset of a metric space Y , n ∈ N and δ < 1.
Then,

εn(kδ+1)(F ) ≤ earb
n (F , δ) ≤ εnkδ

(F )

with
kδ := ⌈log2(1/δ + 1)⌉ − 1.

; gain of nonlinear adaptive measurements is limited for fixed δ > 0
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An example

We illustrate these results by the example of approximating vectors
from the unit ball F = Bm

p of ℓm
p in the norm of Y = ℓm

q .

We know

εn(Bm
p , ℓm

q ) ≍
( log(m/n + 1)

n

) 1
p − 1

q

for log(m) ≤ n ≤ m and p ≤ q.

We will only discuss p = 2 and q = ∞.
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An example II

We denote the number of measurements for ℓ∞-error ε ∈ (0, 1) by

n?(ε, δ) := inf
{

n : e?
n(Bm

2 , δ) ≤ ε
}

.

We have that

nlin(ε, δ) = ∞ for ε < δ,

nlin(ε, δ) ≳ nlin(ε, 0) ≳ m for ε > δ,

ncont(ε, 0) ≤ ⌈log2(m + 1)⌉ for all ε > 0,

log1/δ(m) · ε−2 ≲ ncont(ε, δ) ≲ log2(m) · ε−2
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Final remarks

For Y = ℓm
q , q ∈ {1, ∞}, the functionals are piecewise linear.

Neural networks...

For ℓ2-approximation in F = Bm
1 , we have

nlin(ε, δ) ≈ ncont(ε, δ) for ε < δ.

A particularly interesting question:

Open problem
What about other classes of measurements?

(just norms; convex, homogeneous, smooth)
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Thank you, Albert!
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Thank you, Albert!
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Lipschitz noisy information

Let us consider Lipschitz-continuous measurements.
(The result depends on the Lipschitz constant.)

Theorem [Krieg/Novak/Plaskota/U ’25]
For any δ · ε0(F ) < 1, we have

δ

L ≤ eLip
n (F , δ) ≤ εn(F ) + n δ

L · ε0(F ) ,

where eLip
n is the n-th minimal error with L-Lipschitz functionals.

In particular,
econt

n (F , δ) ≤ εn(F ).
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