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The quadratic porous medium equation (QPME) reads

∂tu = 1
2 div(D∇u2), u(t = 0) = u0.

Solved over the time interval [0,T ], domain Td = (R/Z)d ,
initial data u0 ≥ 0, smooth diffusion tensors D : Td → S++

d .

▶ Reformulation by Y. Brenier as a convex optimization
problem in space and time, related with optimal transport.

▶ Unconventional numerical method, relying on space-time
FFT and proximal operators. No CFL, 2nd order.

▶ Applies to various conservation equations, fluid mechanics.

� Y. Brenier, Examples of hidden convexity in nonlinear PDEs.
Book available online (2020).
� D. Vorotnikov, Hidden convexity and Dafermos’ principle for
some dispersive equations. arXiv (2025)
“The physical solution dissipates entropy earliest and fastest”

� S. Singh, J. Ginster, A. Acharya, A hidden convexity of
nonlinear elasticity. Journal of Elasticity (2024).
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▶ Non-linear PDEs often do not admit smooth solutions.
▶ Consider the weak form: ∀ϕ ∈ C∞

c ([0,T [×Td)∫
[0,T ]×Td

(∂tu−1
2 div(D∇u2))ϕ =

∫
[0,T ]×Td

−(u−u0)∂tϕ−1
2u

2 div(D∇ϕ)

▶ Ex: Barenblatt profile (non-smooth, compact support)
▶ Issue: possibly several weak solutions.

(Are there non-positive QPME solutions ?)
BBB selection principle: minimize the total kinetic energy
1
2

∫
[0,T ]×Td u

2 (or a suitable entropy) among all weak solutions

inf
u(0)=u0

sup
ϕ(T )=0

∫
[0,T ]×Td

1
2u

2 − (u − u0)∂tφ− 1
2u

2 div(D∇φ)

?
= sup
ϕ(T )=0

inf
u(0)=u0

∫
[0,T ]×Td

1
2u

2(1 − div(D∇ϕ))− (u − u0)∂tϕ.

▶ Question mark: does duality hold ? (We’ll come back to this)
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▶ Non-linear PDEs often do not admit smooth solutions.
▶ Consider the weak form: ∀ϕ ∈ C∞

c ([0,T [×Td)

0 =

∫
[0,T ]×Td

−(u − u0)∂tϕ− 1
2u

2 div(D∇ϕ)

▶ Ex: Barenblatt profile (non-smooth, compact support)
▶ Issue: possibly several weak solutions.

(Are there non-positive QPME solutions ?)
BBB selection principle: minimize the total kinetic energy
1
2

∫
[0,T ]×Td u

2 (or a suitable entropy) among all weak solutions

inf
u(0)=u0

sup
ϕ(T )=0

∫
[0,T ]×Td

1
2u

2 + (∂tu − 1
2 div(D∇u2))ϕ︸ ︷︷ ︸

Understood in weak sense

?
= sup
ϕ(T )=0

inf
u(0)=u0

∫
[0,T ]×Td

1
2u

2(1 − div(D∇ϕ))− (u − u0)∂tϕ.

Project the null function onto the manifold of weak solutions.
(Acharya et al often project an initial guess uref)

▶ Question mark: does duality hold ? (We’ll come back to this)
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Dual formulation

▶ Assuming duality holds, kinetic energy minimization reads

sup
ϕ(T )=0

inf
u(0)=u0

∫
[0,T ]×Td

1
2u

2(1 − div(D∇ϕ))− (u − u0)∂tϕ

▶ Minimize pointwise w.r.t. u, assuming div(D∇ϕ) < 1:

u =
∂tϕ

1 − div(D∇ϕ)

ϕ(T ) = 0.

Convex optimization problem w.r.t. ϕ

inf
ϕ(T )=0

∫
[0,T ]×Td

(∂tϕ)
2

2(1 − div(D∇ϕ))
− u0∂tϕ.
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Dual formulation

▶ Assuming duality holds, kinetic energy minimization reads

sup
ϕ(T )=0

inf
u(0)=u0

∫
[0,T ]×Td

1
2u

2(1 − div(D∇ϕ))− (u − u0)∂tϕ

▶ Minimize pointwise w.r.t. u, assuming div(D∇ϕ) < 1:

∂tϕ = (1 − div(D∇ϕ))u, ϕ(T ) = 0.

Convex optimization problem w.r.t. ϕ

inf
ϕ(T )=0

∫
[0,T ]×Td

(∂tϕ)
2

2(1 − div(D∇ϕ))
− u0∂tϕ.
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Dual formulation
▶ Assuming duality holds, kinetic energy minimization reads

sup
ϕ(T )=0

inf
u(0)=u0

∫
[0,T ]×Td

1
2u

2(1 − div(D∇ϕ))− (u − u0)∂tϕ

▶ Minimize pointwise w.r.t. u, assuming div(D∇ϕ) < 1:

∂tϕ = (1 − div(D∇ϕ))u, ϕ(T ) = 0.

Convex optimization problem w.r.t. ϕ

inf
ϕ(T )=0

∫
[0,T ]×Td

(∂tϕ)
2

2(1 − div(D∇ϕ))
− u0∂tϕ.

Ratio understood as the convex l.s.c. perspective function

P(a, b) :=


a2/(2b) if b > 0,
0 if a = b = 0,
∞ else.
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Dual formulation
▶ Assuming duality holds, kinetic energy minimization reads

sup
ϕ(T )=0

inf
u(0)=u0

∫
[0,T ]×Td

1
2u

2(1 − div(D∇ϕ))− (u − u0)∂tϕ

▶ Minimize pointwise w.r.t. u, assuming div(D∇ϕ) < 1:

∂tϕ = (1 − div(D∇ϕ))u, ϕ(T ) = 0.

Convex optimization problem w.r.t. ϕ

inf
ϕ(T )=0

∫
[0,T ]×Td

(∂tϕ)
2

2(1 − div(D∇ϕ))
− u0∂tϕ.

▶ Letting m := ∂tϕ and ρ := 1 − div(D∇ϕ) we find

inf
m,ρ

∫
[0,T ]×Td

m2

2ρ
−u0m, s.t. ∂tρ+div(D∇m) = 0, ρ(T ) = 1.
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A ballistic variant of optimal transport

The Benamou-Brenier formulation of optimal transport reads

inf
m,ρ

∫
[0,1]×Ω

|m|2

2ρ
, s.t. ∂tρ+ divm = 0, ρ(0) = ρ0, ρ(1) = ρ1,

where ρ0, ρ1 are probability densities on Ω.

Similar structure as the QPME reformulation, with the caveats:
▶ Boundary conditions at both endpoints, vs ρ(T ) = 1.
▶ First order continuity equation, vs ∂tρ+ div(D∇m) = 0.
▶ Absence of the first order term, vs −u0m.

� J.-D. Benamou, Y. Brenier, A computational fluid mechanics
solution to the Monge-Kantorovich mass transfer problem.
Numer Math (2000).
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▶ Staggered time grids, with half timestep τ > 0, T/(2τ) ∈ N

Tτ := {0, 2τ, · · · ,T}, T ′
τ := {τ, 3τ, · · · ,T − τ}.

∂τu(t, x) :=
u(t + τ, x)− u(t − τ, x)

2τ
.

Spatial grid Th := {0, h, · · · , 1 − h}, where 1/h∈N.

▶ Unknowns m : T ′
τ × Th → R and ρ : Tτ × Th → R are s.t.

∂τρ = Lhm, ρ(T , ·) = 1,

where Lh discretizes − div(D∇·). For now assume D = Id
and standard Laplacian discretization. (ei )

d
i=1 can. basis

−Lhu(x) :=
1
h2

d∑
i=1

[u(x + hei )− 2u(x) + u(x − hei )]

▶ Discretized BBB energy, with averaging operator A:

2τhd
∑

t∈T ′
τ , x∈Td

h

[ m(t, x)2

2A
(
ρ(t − τ, x), ρ(t + τ, x)

)−m(t, x)u0(x)
]
.
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Arithmetic average: A(ρ−, ρ+) = (1 − θ)ρ− + θρ+.
∑

t∈T ′
τ , x∈Td

h

[ m(t, x)2

2(1 − θ)ρ(t − τ, x) + 2θρ(t + τ, x)
−m(t, x)u0(x)

]
,

where θ ∈ [0, 1].
▶ Arithmetic mean θ = 1

2 typically used for OT discretization
� N. Papadakis, G. Peyré, E. Oudet, Optimal transport
with proximal splitting. SIAM Imag Science (2014).

▶ A discrete duality argument shows that minimizing this
energy is equivalent to solving the scheme

∂τu(t, ·) +
1
2

[
θLhu

2(t − τ, ·) + (1 − θ)Lhu
2(t + τ, ·)

]
= 0,

t ∈ T ′
τ , with initial condition u(τ) + τ(1− θ)Lhu

2(τ) = u0.
▶ Standard θ-scheme for the QPME:
θ = 1 Explicit scheme, first order accurate, with CFL.
θ = 1

2 Semi-implicit scheme, second order accurate, with CFL.
θ = 0 Implicit scheme, first order accurate, without CFL.
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Harmonic average: A(ρ−, ρ+)
−1 = 1

2(ρ
−1
− + ρ−1

+ )

∑
t∈T ′

τ , x∈Td
h

[ m(t, x)2

4ρ(t − τ, x)
+

m(t, x)2

4ρ(t + τ, x)
−m(t, x)u0(x)

]
.

▶ Optimality conditions similar to a mean field game

∂τu(t)+
1
4
Lh

(
u(t−τ)2

Aρ(t − τ)2

ρ(t)2

)
+

1
4
Lh

(
u(t+τ)2

Aρ(t + τ)2

ρ(t)2

)
= 0,

initial condition for u, and terminal condition ρ(T ) = 1.

Theorem (E. Stampfli, M, 2025)
Assume a smooth positive solution u of the QPME. Then

max
t∈Tτ

∥ϕ(t, ·)− ϕτ
h(t, ·)∥ℓ1(Td

h )
= O(τ2 + h2).

ϕ, ϕτ
h are the continuous and discrete dual potentials. τ, h > 0

▶ Potential ϕ satisfies m = ∂τϕ and ρ = 1 + Lhϕ.
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Theorem (E. Stampfli, M, 2025)
Assume a smooth positive solution u of the QPME. Then

max
t∈Tτ

∥ϕ(t, ·)− ϕτ
h(t, ·)∥ℓ1(Td

h )
= O(τ2 + h2).

ϕ, ϕτ
h are the continuous and discrete dual potentials. τ, h > 0

▶ Potential ϕ satisfies m = ∂τϕ and ρ = 1 + Lhϕ.
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− + ρ−1

+ )

∑
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Numerical experiment, using the Barenblatt profile.
▶ Compactly supported, non-smooth solution of the QPME

u(t, x) :=
2
tα

max
{
0, γ − β

4
∥x∥2

t2β
}
,

α := d
d+2 , β := 1

d+2 . Obtained expressions of mT (t, x), ρT (t, x)

▶ Barenblatt profile is an attractor. BBB formulation with
only 10 timesteps on [0, 1]. (explicit > 30 000 timesteps,
semi-implicit > 5 000 timesteps)
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Multi-dimensional anisotropic QPME
▶ Consider a stencil E ⊆ Zd and smooth weights λe s.t.

D(x) =
∑
e∈E

λe(x)ee⊤

▶ Monotone numerical scheme −Lhu = div(D∇u) +O(h2),

−Lhu(x) =
∑
e∈E
ν=±

λe(x + 1
2hνe)

u(x + hνe)− u(x)

h2

▶ Same convergence result and numerical approach
(primal-dual algorithm using a space-time FFT).

Figure: Synthetic two-dimensional experiment (deformed medium)
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Voronoi/Selling decomp. of positive quadratic forms
▶ We use adaptive finite difference based on the

decomposition of the anisotropy matrix D ∈ S++
d with

non-negative weights λe ≥ 0, integer offsets e ∈ Zd .∑
e∈Zd

λeee⊤ = D

▶ Voronoi/Selling selection principle:

max
λ:Zd→[0,∞[

∑
e∈Zd

λe subject to
∑
e∈Zd

λeee⊤ = D.

(There is a solution with ≤ d(d + 1)/2 positive coefficients.)
▶ Dual linear program:

min
M∈Sd

Tr(DM) s.t. ∀e ∈ Zd \ {0}, ∥e∥2
M := ⟨e,Me⟩ ≥ 1.

▶ Periodic sphere packing pb: replace Tr(DM) with det(M).

� F. Bonnans, G. Bonnet, M, Monotone Discretization of
Anisotropic Differential Operators Using Voronoi’s First
Reduction. Constr. Approx. (2023)
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▶ Left: Unit ball defined by D =

(
1 + a b
b 1 − a

)
, a2 + b2 < 1.

▶ Right: Linear program minimizer 2M. Support of decomp.
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▶ Left: Unit ball defined by D =

(
1 + a b
b 1 − a

)
, a2 + b2 < 1.

▶ Right: Linear program minimizer 2M. Support of decomp.
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Theorem (Properties of Voronoi’s decomposition)
There are computable coefficients λe ∈ Lip(S++

d , [0,∞[) s.t.
▶ (Consistency) D =

∑
e∈Zd λe(D)ee⊤

▶ (Support) cardinality: #{e ∈ Zd | λe(D) ̸= 0} ≤ N(d),
and intrinsic radius: λe(D) ̸= 0 ⇒ ∥e∥D−1 ≤ R(d)∥D− 1

2 ∥
▶ (Spanning, if d ≤ 4) ∃e1, · · · , ed ∈ Zd ,

| det(e1, · · · , ed)| = 1 and λe1(D), · · · , λed (D) > 0.
▶ (Unimodular inv.) λe(D) = λAe(ADA⊤), ∀A ∈ GL(Zd).

Variant with smooth coefficients, obtained by considering a
smooth strictly convex variant of Voronoi’s linear program.

max
λ

∑
e∈supp(ρ)

λe − δρeB
(λe

ρe
)

subject to D =
∑

e∈supp(ρ)

λeee⊤

Barrier fct B(s) := 1
2s

2 − ln s. Carefully chosen weights ρe(D).

� M. Haloui, L. Métivier, M, Selling’s decomposition and the
anisotropic wave equation, preprint, 2025
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Theorem (Properties of Voronoi’s decomposition)
There are computable coefficients λe ∈ C∞(S++

d , [0,∞[) s.t.
▶ (Consistency) D =

∑
e∈Zd λe(D)ee⊤

▶ (Support) cardinality: #{e ∈ Zd | λe(D) ̸= 0} ≤ N(d),
and intrinsic radius: λe(D) ̸= 0 ⇒ ∥e∥D−1 ≤ R(d)∥D− 1

2 ∥
▶ (Spanning, if d ≤ 6) ∃e1, · · · , ed ∈ Zd ,

| det(e1, · · · , ed)| = 1 and λe1(D), · · · , λed (D) > 0.
▶ (Unimodular inv.) λe(D) = λAe(ADA⊤), ∀A ∈ GL(Zd).

Variant with smooth coefficients, obtained by considering a
smooth strictly convex variant of Voronoi’s linear program.

max
λ

∑
e∈supp(ρ)

λe − δρeB
(λe

ρe
)

subject to D =
∑

e∈supp(ρ)

λeee⊤

Barrier fct B(s) := 1
2s

2 − ln s. Carefully chosen weights ρe(D).

� M. Haloui, L. Métivier, M, Selling’s decomposition and the
anisotropic wave equation, preprint, 2025
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Structure preserving anisotropic PDEs on grids
Based on Voronoi’s decomp: D =

∑
e∈E λeee⊤, λe ≥ 0, E ⊆ Zd

▶ Causal schemes for eikonal type PDEs, ∥v∥D :=
√
v⊤Dv

∥∇u(x)∥2
D =

∑
e∈E

λe

h2 max{0, u(x)−u(x−he), u(x)−u(x+he)}2+O(h)

▶ Monotone schemes for degenerate elliptic PDEs

Tr(D∇2u(x)) =
∑
e∈E

λe u(x + he)− 2u(x) + u(x − he)

h2 +O(h2)

▶ Low dispersion error scheme for wave eq. ∂ttq = div(D∇q)

qn+1(x)− 2qn(x) + qn−1(x)

τ2 =
∑
e∈E
ν=±

λe(x+1
2hνe)

qn(x + hνe)− qn(x)

h2

� Guillaume Bonnet, M, Monotone discretization of the
Monge-Ampère equation of optimal transport, M2AN, 2022
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Structure preserving anisotropic PDEs on grids
Based on Voronoi’s decomp: D =

∑
e∈E λeee⊤, λe ≥ 0, E ⊆ Zd

▶ Causal schemes for eikonal type PDEs, ∥v∥D :=
√
v⊤Dv

∥∇u(x)∥2
D =

∑
e∈E

λe

h2 max{0, u(x)−u(x−he), u(x)−u(x+he)}2+O(h)

▶ Monotone schemes for degenerate elliptic PDEs

Tr(D∇2u(x)) =
∑
e∈E

λe u(x + he)− 2u(x) + u(x − he)

h2 +O(h2)

▶ Low dispersion error scheme for wave eq. ∂ttq = div(D∇q)

qn+1(x)− 2qn(x) + qn−1(x)

τ2 =
∑
e∈E
ν=±

λe(x+1
2hνe)

qn(x + hνe)− qn(x)

h2

� M, Riemannian Fast-Marching on Cartesian Grids, Using
Voronoi’s First Reduction of Quadratic Forms. SINUM, 2019
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D =
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▶ Monotone schemes for degenerate elliptic PDEs
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Burgers equation : ∂tu + 1
2∂xu

2 = ν∂xxu, ν ≥ 0.

BBB formulation: minimize kinetic energy among weak solutions

inf
u(0)=u0

sup
ϕ(T )=0

∫
[0,T ]×T

1
2
u2 + (∂tu + 1

2∂xu
2 − ν∂xxu)ϕ︸ ︷︷ ︸

Understood in the weak sense

?
= sup

ϕ(T )=0
inf

u(0)=u0

∫
[0,T ]×T

1
2u

2(1 − ∂xϕ)− u(∂tϕ+ ν∂xxϕ) + u0∂tϕ

= − inf
ϕ(T )=0

∫
[0,T ]×T

(∂tϕ+ ν∂xxϕ)
2

2(1 − ∂xϕ)
− u0∂tϕ

= − inf
m,ρ

∫
[0,T ]×T

(m − ν∂xρ)
2

2ρ
− u0m, s.t. ∂tρ+ ∂xm = 0, ρ(T ) = 1.

Under the assumption ∂xϕ < 1, and with the relations

(1 − ∂xϕ)u = ∂tϕ+ ν∂xxϕ, ϕ(T ) = 0
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Burgers equation : ∂tu + 1
2∂xu

2 = ν∂xxu, ν ≥ 0.

BBB formulation: minimize kinetic energy among weak solutions

inf
u(0)=u0

sup
ϕ(T )=0

∫
[0,T ]×T

1
2
u2 + (∂tu + 1

2∂xu
2 − ν∂xxu)ϕ︸ ︷︷ ︸

Understood in the weak sense

?
= sup

ϕ(T )=0
inf

u(0)=u0

∫
[0,T ]×T

1
2u

2(1 − ∂xϕ)− u(∂tϕ+ ν∂xxϕ) + u0∂tϕ

= − inf
ϕ(T )=0

∫
[0,T ]×T

(∂tϕ+ ν∂xxϕ)
2

2(1 − ∂xϕ)
− u0∂tϕ

= − inf
m,ρ

∫
[0,T ]×T

(m − ν∂xρ)
2

2ρ
− u0m, s.t. ∂tρ+ ∂xm = 0, ρ(T ) = 1.

Under the assumption ∂xϕ < 1, and with the relations

ρ = 1 − ∂xϕ, m = ∂tϕ, ρu = m − ν∂xρ.
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▶ BBB formulation of Burgers’ equation, ν ≥ 0

inf
ρ,m

∫
[0,T ]×T

(m − ν∂xρ)
2

2ρ
−u0m, s.t. ∂tρ+∂xm = 0, ρ(T ) = 1.

▶ Discretized BBB energy, half timestep τ , half gridscale h

∑
t∈T ′

τ
x∈Th

(1
4

∑
σt=±
σx=±

(
m(t, x)− ν∂hρ(t + σtτ, x)

)2

2ρ(t + σtτ, x + σxh)
−m(t, x)u0(x)

)
,

subject to ∂τρ+ ∂hm = 0, and ρ(T ) = 1.
▶ Staggered time and space grids m ∈ RT ′

τ×Th , ρ ∈ RTτ×T′
h .

Theorem (E. Stampfli, M, 2025)
Assume a smooth positive solution on [0,T ], with ν ≥ 0. Then

max
t∈Tτ

∥ϕ(t, ·)− ϕτh(t, ·)∥ℓ1(Td
h )

= O(τ2 + h2),

ϕ, ϕτh are the continuous and discrete dual potentials. τ, h > 0
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Figure: Solving Burgers equation with small viscosity, ν = 10−3.

Figure: Numerical solution of inviscid Burgers, ν = 0. The final time
is correct, but the intermediate times are not reconstructed !
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Figure: Solving Burgers equation with small viscosity, ν = 10−3.

Figure: Numerical solution of inviscid Burgers, ν = 0. The final time
is correct, but the intermediate times are not reconstructed !
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Brenier/Gallouët mountain climbing analogy

Figure: Mt. Everest to Lhotse along the crest is still an open problem.
▶ The BBB formulation of Burger’s equation selects the weak

solution with the correct final value and the fewest shocks.
▶ PDE ≈ path along crest. BBB ≈ path through valley.

� Y. Brenier, The initial value problem for the Euler equations
of incompressible fluids viewed as a concave maximization
problem. Comm Math. Physics (2018).
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Conclusion:
▶ BBB formulation turns evolution PDEs into global

optimization problems with nice convexity properties.
▶ Proximal primal-dual algo, using space-time FFT. No CFL.
▶ Selling-based Laplacian discretization has many other uses.
▶ Unconventional approach: solve only the final time u(T , ·) !

Perspectives:
▶ Fluid mechanics PDEs.
▶ Weighted kinetic energy

∫
[0,T ]×Td e

−γt∥u(x , t)∥2dx dt.

Happy birthday and thank you Albert !
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Tr(D∇2u(x)) =
∑
e∈E

λe u(x + he)− 2u(x) + u(x − he)

h2 +O(h2)

▶ Monotone discretization of Monge-Ampere, via

d det(∇2u)
1
d = inf{Tr(D∇2u) | D ∈ S++

d , detD = 1}

Designing a refractor projecting a given image amounts to solve

det
(
∇2u(x)− A(x ,∇u(x))

)
= B(x ,∇u(x)),

x ∈ Ω, with boundary conditions ∇u(x) ∈ P(x), x ∈ ∂Ω.

� Guillaume Bonnet, M, Monotone discretization of the
Monge-Ampère equation of optimal transport, M2AN, 2022
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▶ Monotone discretization of Monge-Ampere, via
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1
d = inf{Tr(D∇2u) | D ∈ S++

d , detD = 1}

Designing a refractor projecting a given image amounts to solve
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(
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Figure: Left: image to reproduce. Right: Appelseed® render.

Figure: Left: refractor. Right: curvature of refractor.
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∥∇u∥2
D =

∑
e∈E

λe

h2 max{0, u(x)−u(x−he), u(x)−u(x+he)}2+O(h)

▶ Causal scheme (FMM solvable) for eikonal PDE ∥∇u∥D = 1
▶ Applications to path planning and tubular segmentation.

▶ Ex: Reeds-Shepp sub-Riemannian vehicle model.

Position-orientation state space M := R2
x × S1

θ, anisotropic
eikonal equation with relaxation parameter ε > 0

⟨∇xu, n(θ)⟩2 + ε2⟨∇xu, n(θ)⊥⟩2 + (∂θu)
2 = c(x , θ)2,

where n(θ) = (cos θ, sin θ), and c(x , θ) is a cost function.
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▶ Causal scheme (FMM solvable) for eikonal PDE ∥∇u∥D = 1
▶ Applications to path planning and tubular segmentation.
▶ Ex: Reeds-Shepp sub-Riemannian vehicle model.

Position-orientation state space M := R2
x × S1

θ, anisotropic
eikonal equation with relaxation parameter ε > 0

⟨∇xu, n(θ)⟩2 + ε2⟨∇xu, n(θ)⊥⟩2 + (∂θu)
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Left: cost function c(x , y , θ) processed from a retina scan.
Right: Reeds-Shepp vehicle minimal paths.

� G. Sanguinetti, E. Bekkers, R. Duits, M. Jansen, M.
Mashtakov, M, Sub-Riemannian fast marching in SE(2),
Iberoamrican congress on Pattern recognition, 2015
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qn+1(x)− 2qn(x) + qn−1(x)

τ2 =
∑
e∈E
ν=±

λe(x+1
2hνe)

qn(x + hνe)− qn(x)

h2

▶ Discretizes the wave equation ∂ttq = div(D∇q).
▶ Guarantees against checkerboard artifacts (Spanning prop).
▶ Fourth order variant. Cv rates if smooth coefficients λe .

Theorem (Reduced dispersion error of the Selling scheme)
Consider the Fourier symbol assoc. to the Selling based scheme

βh(ξ) :=
∑
e∈E

λe sinc(h2 ⟨ξ, e⟩)
2, where D =

∑
e∈E

λeee⊤.

Then for all ξ ∈ Rd and D ∈ S++
d ,

|βh(ξ)− ∥ξ∥2
D | ≤ C (d) h2 ∥ξ∥4

D∥D−1∥.

Not satisfied by axis-aligned and criss-cross schemes, any C (d).

� M. Haloui, L. Métivier, M, Selling’s decomposition and the
anisotropic wave equation, preprint, 2025
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Selling finite differences

First Second pure

Axis-aligned finite differences

First Second pure Second mixed

Criss-cross finite differences

First Second pure Second mixed

Figure: The Selling scheme avoids four-point mixed finite differences.

Figure: The Selling-scheme dispersion curve βh(ξ) = 1 is closer to the
ideal ellipse ∥ξ∥D = 1 than other schemes. Right: max error vs aniso.
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