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The problem of sampling recovery

Given: A domain D and a function f : D → C.

Task: Find a good approximation of f . The error is mea-
sured in Lp(µ) for some p and µ.

Problem: We do not know f and can only obtain samples
f(x1), . . . , f(xm). Each sample is costly!

▶ What are good sampling points? What is the best we can do
with m samples?

This question only make sense if we have some a priori knowledge
about f (smoothness, structure, ...). The model class F is the
class of all functions that satisfy the a priori knowledge.
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Sampling numbers

We want to study the worst-case error of the best possible
algorithm that uses at most m samples:

gm(F,Lp) :=

inf
x1,...,xm∈D
Φ: Cm→Lp

sup
f∈F

∥∥∥f −

sampling algorithm︷ ︸︸ ︷
recovery map︷︸︸︷

Φ (

samples︷ ︸︸ ︷
f(x1), . . . , f(xm))

∥∥∥
p
.︸ ︷︷ ︸

approximation error in Lp(µ)︸ ︷︷ ︸
worst case over the model class︸ ︷︷ ︸

worst case error of best sampling algorithm
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What model classes F do we consider?

▶ There are many results for particular (smoothness) classes F :
Sobolev, Korobov, Gaussian, Hölder, Wiener, Besov, . . .

▶ We do not want to consider specific classes, but rather study
general relations to other approximation benchmarks.

▶ We discuss three different approaches.

▶ All three approaches work nicely if:

Global assumption

Let D be a compact metric space, µ a Borel probability measure,
and F a compact subset of C(D), the space of continuous
functions.
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1. Comparison with best uniform approximation

The n-th Kolmogorov number of F in C(D) is

dn(F,C(D)) := inf
Vn⊂C(D)
dim(Vn)=n

sup
f∈F

inf
g∈Vn

∥f − g∥∞.︸ ︷︷ ︸
best approximation from Vn︸ ︷︷ ︸

worst case over model class︸ ︷︷ ︸
best approximation space Vn

▶ It describes the best uniform approximation of F by an
n-dimensional space.

▶ By the compactness, we have lim
n→∞

dn(F,C(D)) = 0.
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Theorem 1

For any D, µ and F ,

g4n(F,Lp(µ)) ≤ 6 · n(1/2−1/p)+ · dn(F,C(D)).

Remark (references)

The case p = 2 was obtained by V. Temlayakov (JoC, 2021).

The case for general p is joint work with K. Pozharska, M. Ullrich,
and T. Ullrich (JMAA, to appear).

Constants: work in progress with M. Dolbeault and M. Ullrich.
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Theorem 1

For any D, µ and F ,

g4n(F,Lp(µ)) ≤ 6 · n(1/2−1/p)+ · dn(F,C(D)).

Remark (local version)

In fact, for any space Vn ⊂ C(D), we find a plain least-squares
estimator f̂ := argming∈Vn

∑4n
i=1 |g(xi)− f(xi)|2 such that

∀f ∈ C(D) : ∥f − f̂∥p ≤ 6 · n(1/2−1/p)+ · inf
g∈Vn

∥f − g∥∞.
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Theorem 1

For any D, µ and F ,

g4n(F,Lp(µ)) ≤ 6 · n(1/2−1/p)+ · dn(F,C(D)).

Remark (sharpness)

In general, the bound cannot be improved:

If F is the unit ball of the Sobolev space W s
1 [0, 1] (for p ≥ 2) or

W s
∞[0, 1] (for p ≤ 2), then

gn(F,Lp(µ)) ≍ n(1/2−1/p)+ · dn(F,C(D)).
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Theorem 1

For any D, µ and F ,

g2n(F,C(D)) ≤ 4
√
n · dn(F,C(D)).

Remark (related bounds for p = ∞)

Two related bounds by E. Novak (Springer Lecture Notes, 1988)
and B. Kashin, S. Konyagin, V. Temlyakov (CA, 2023):

gn(F,C(D)) ≤ (n+ 1) · dn(F,C(D))

g9n(F,C(D)) ≤ 5 · dn(F,C(D))
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2. Comparison with best L2-approximation

The n-th Kolmogorov number of F in L2(µ) is

dn(F,L2(µ)) := inf
Vn⊂C(D)
dim(Vn)=n

sup
f∈F

inf
g∈Vn

∥f − g∥2︸ ︷︷ ︸
best approximation from Vn︸ ︷︷ ︸

worst case over model class︸ ︷︷ ︸
best approximation space Vn

.

▶ It describes the best L2(µ) approximation of F by an
n-dimensional space. We could restrict to linear approximation
(the best approximation is given by the orthogonal projection).
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Theorem 2

For any D, µ and F ,

g8n(F,L2) ≤ 20√
n
·
∑
k≥n

dk(F,L2)√
k

.

Remark (references)

The result is basically from joint work with M. Dolbeault and
M. Ullrich (ACHA, 2023).

Small improvement in a paper with K. Pozharska, M. Ullrich, and
T. Ullrich (preprint).

Constants: work in progress with M. Dolbeault and M. Ullrich.
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Theorem 2

For any D, µ and F ,

g8n(F,L2) ≤ 20√
n
·
∑
k≥n

dk(F,L2)√
k

.

Remark (tractability)

Requires

R :=

∞∑
k=1

dk(F,L2)√
k

< ∞.

But then already a simplified formula can be useful in high
dimensions:

g8n(F,L2(D)) ≤ 20R · n−1/2.
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Theorem 2

For any D, µ and F ,

g8n(F,L2) ≤ 20√
n
·
∑
k≥n

dk(F,L2)√
k

.

Remark (convergence rates)

In particular, if dn(F,L2) ≲ n−s logr n, then

gn(F,L2) ≲


n−s logr n if s > 1/2,

n−s logr+1 n if s = 1/2 and r < −1,

1 otherwise.

Moreover, there exist classes F such that these bounds are sharp.
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Theorem 2

For any D, µ and F ,

g8n(F,L2) ≤ 20√
n
·
∑
k≥n

dk(F,L2)√
k

.

Remark (other approximation spaces)

In fact, for any sequence of nested approximation spaces (Vn)n∈N,
we find a weighted least squares estimator

f̂ := argmin
g∈Vn

8n∑
i=1

wi|g(xi)− f(xi)|2 s.t.

∀f ∈ F : ∥f − f̂∥p ≤ 20√
n
·
∑
k≥n

k−1/2
(
sup
f∈F

dist2(f, Vn)
)
.
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Theorem 2

For any D, µ and F ,

g8n(F,L2) ≤ 20√
n
·
∑
k≥n

dk(F,L2)√
k

.

Remark (Hilbert case)

There is a slightly better formula for Hilbert spaces (see ACHA):

g4n(F,L2) ≤ 12√
n
·
√∑

k≥n

dk(F,L2)2.

This bound is sharp up to the constants for any possible sequence
of Kolmogorov numbers (joint work with J. Vyb́ıral (JFAA, 2023)).
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Theorem 2

For any D, µ and F ,

g8n(F,L2) ≤ 20√
n
·
∑
k≥n

dk(F,L2)√
k

.

Remark (p ̸= 2)

If the approximation spaces are “nice enough”, this can be turned
into a bound for sampling numbers in Lp(µ) or other error norms
(see preprint with K. Pozharska, M. Ullrich, and T. Ullrich). “Nice
enough” means a good behavior of

Λn := sup
f∈Vn\{0}

∥f∥p
∥f∥2

.
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Theorem 2

For any D, µ and F ,

g8n(F,L2) ≤ 20√
n
·
∑
k≥n

dk(F,L2)√
k

.

Remark (randomized algorithms)

The expected error of randomized algorithm behaves even nicer.
Here we have

gran2n (F,L2) ≤ 4 dn(F,L2).

See the papers by A. Cohen and M. Dolbeault (JoC, 2022) and
A. Chkifa and M. Dolbeault (SIAM JoNA, 2024).
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3. Comparison with best sparse approximation

Let B be a finite orthonormal system in L2(µ) which consists of
bounded functions and let

Σn(B) :=
⋃

b1,...,bn∈B
Span{b1, . . . , bn}.

The best n-term widths of F w.r.t. B are defined by

σn(F,B) := sup
f∈F

inf
g∈Σn(B)

∥f − g∥∞︸ ︷︷ ︸
best n-sparse approximation︸ ︷︷ ︸

worst case over model class

.
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Theorem 3

For any n ≥ 2maxb∈B ∥b∥2∞, we have

gm(n)(F,Lp(µ)) ≤ C · n(1/2−1/p)+ · σn(F,B).

where m(n) := Cn log3(n) log(#B).

Remarks

Note the similarity to Theorem 1 for the special case #B = n,
where σn(F,B) = dn(F,Span(B)).
Because of the condition on n, the bound is only useful for special
orthonormal systems (like Fourier or Walsh functions). The
constant C is universal.
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Theorem 3

For any n ≥ 2maxb∈B ∥b∥2∞, we have

gm(n)(F,Lp(µ)) ≤ C · n(1/2−1/p)+ · σn(F,B).

where m(n) := Cn log3(n) log(#B).

Remarks (reference)

The bound follows from classical compressed sensing algorithms
(ℓ1-minimization, square-root lasso) and their analysis, for
instance, Rauhut & Ward (2016).

We only reinterpret the samples f(xi), f ∈ F , as noisy samples of
the sparse function g(xi), g ∈ Σn.
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Theorem 3

For any n ≥ 2maxb∈B ∥b∥2∞, we have

gm(n)(F,Lp(µ)) ≤ C · n(1/2−1/p)+ · σn(F,B).

where m(n) := Cn log3(n) log(#B).

Remarks (linear vs. nonlinear)

The approach was used by T. Jahn, T. Ullrich and F. Voigtlaender
(JoC, 2023) to obtain new asymptotic bounds for the sampling
numbers W s,mix

p ([0, 1]d), p < 2.

Any linear algorithm has a worse order of convergence.
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Theorem 3

For any n ≥ 2maxb∈B ∥b∥2∞, we have

gm(n)(F,Lp(µ)) ≤ C · n(1/2−1/p)+ · σn(F,B).

where m(n) := Cn log3(n) log(#B).

Remarks (linear vs. nonlinear)

The approach was used by K. (PAMS, 2024) to obtain tractability
results for Lp-approximation in Wiener-type function classes, e.g.,
the unit ball of

Cα(Td) ∩ A(Td).

All linear algorithms suffer from the curse of dimensions.
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Thank you for your attention!
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