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The beginning ....

Marc Menec, IS&3D ENG.

... a short-term Student-Grant, funded by Banco de Santander, to
promote colaboration University/Industry (IS & 3D ENG.) within the
Master program INVESTMAT

underwater appendages such as the bulb, the keel or the rudder have an
important effect on performance.
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The beginning ....

Sections of appendages

In yacht design, appendages are often constructed from a basic planar
section α(t) = (x(t), y(t)), t ∈ [0, 1],whose shape determines the drag
and lift generated by the appendage.

the problem: search for ways to get an ’optimal’ shape of a section
that minimizes the drag generated by the section ( while preserving
some structural features).
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The beginning ....

A 2D section: α(t) = (x(t), y(t)), t ∈ [0, 1]

(x(0), y(0)) = (x(1), y(1)) is the trailing edge.

In particular, the interest was to reduce the drag coefficient while
preserving specific features of the section by performing some
perturbations of an original shape
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The beginning ....

Mathematical setting in a Discrete Framework

α ≡ (α(ti ))Ni=1 ε = (εi )
N
i=1, → αε := (α(ti ) + εi )

N
i=1

D(α) (Drag Coefficient computed with Xfoil is a cost function )

Minimization Problem: Find ε∗ ∈ RN : D(αε∗) = minε∈RN D(αε)

Compute a ’solution’ by using an appropriate (black-box) optimizer.

Initial guess: ε0 = 0 ≡ αε0 = α

The process is likely to be (very) slow for N moderately large .... among
other problems ...

The cost may be reduced by using a multiscale strategy
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The beginning ....

Closed Curve: NACA-profile, α = (x , y), N = 128 points

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.01

0.02

0.03

0.04

0.05

Required: Minimize (Reduce ...) D(α) (computed with Xfoil)

Using: Black-box minimization tools (from MATLAB ):

fminsearch

patternsearch

Computations carried out using ’our’ MSO (Multi-scale Optimization)
with L = 7, N0 = 22.
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The beginning ....

Reducing the drag on a size-limited foil

Initial Profile: a discrete version of the NACA0010-profile.
The aim: to locally modify it to reduce (’minimize’) D(α) at Re = 106,
while maintainig ’some’ constraints.
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Figure: Initial profile: blue line. Output of a Multi-scale Optimization of the drag
coefficient while preserving chord length and max height: red line. The drag
coefficient is reduced from 9.21 · 10−3 to 4.47 · 10−3 .
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The beginning ....

RD, S. Lopez-Ureña, M. Mennec, ECMI Proceedings 2016

Realistic simulations: Complex Cost functions and Initial shapes (blue
lines) provided by IS&3D ENG.

Improving a rudder shape from an initial NACA0012 foil.
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Computing an ’optimal’ hydrofoil section from an initial H105 shape.
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The beginning ....

Let’s try with an ’academic (Toy) example’ ....

Given the grid (ti )
2L
i=0 = (i2−L)2L

i=0, compute the minimum of the
functional

F (α) := ‖αi − cos(2πxi )‖2
2.

Minimization strategies:

Using the MATLAB fminsearch function directly.

Using the MATLAB fminsearch function combined with the MS-

Initial guess yi := λ cos(2πxi ), L = 7,N = 2L = 128.

Stopping Criteria:

diff. between two consecutive iterates < 10−4 + Cost function < 10−4

Maximum # of iterations in fminsearch (function evaluations): 105.

Cost ≡ Number of function evaluations.
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The beginning ....

Toy Problem
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The beginning ....

Toy Problem
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The beginning ....

Toy Problem
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Our MR-OPT strategy

Discrete Multiresolution Framework

A multiresolution (MR) decomposition of a discrete data set is an
equivalent representation that encodes the information as a coarse
realization of the given data set plus a sequence of detail coefficients of
ascending resolution.

αL → αL−1 → αL−2 → . . .→ α0

↘ dL−1 ↘ dL−2 ↘ . . .↘d0

αL ≡ MαL = (α0, d1, d2, . . . , dL)

detail coefficients: difference in information between consecutive levels

Frameworks for MR:
• Wavelets (I. Daubechies, Y. Meyer, S. Mallat etc..)
• Lifting (W. Sweldens ... )
• Harten [Harten, 90’s, RD, F. Arandiga A. Cohen ... 2000]

levels of resolution: Hierarchy of nested computational meshes
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Our MR-OPT strategy

Harten’s Interpolatory MR framework

Vi+1ViVi−1

U2i−2

U2i−1

U2i

U2i+1

U2i+2b b b b b b b
U(x2i )

U(xi )

Decimation≡ Restriction to even values

Prediction ≡ Via an interpolatory reconstruction I(x , ·){
Vi = U2i

di = U2i+1 − I(x2i+1,V )

}
↔

{
U2i = Vi

U2i+1 = I(x2i+1,V ) + di

}

U ∈ RN , MU = (V , d)
M,2-level MRT
← −− → U = M−1(V , d) V , d ∈ RN/2
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Our MR-OPT strategy

Harten’s Interpolatory MR framework

Prediction by interpolatory reconstructions implies Consistency
between the fine and coarse grid information:

Ũi = I(xi ,V ) ⇒ Ũ2i = I(x2i ,V ) = Vi = U2i

The details are interpolation errors at odd points on fine grid.
Well known behavior with respect to grid-size/smoothnes of
underlying data.
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Our MR-OPT strategy

MR transformation: finest level X L

uL ⇔ {uL−1, dL−1} · · · ⇔ · · · {u0; d0; d1; · · · dL−1} = MuL

uL → uL−1 → uL−2 → . . .→ u0

↘ dL−1 ↘ dL−2 ↘ . . .↘d0

a a a aX 0

a a a a a a a aX l−1

a a a a a a a a a a a a a a a a
X l

X L
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Our MR-OPT strategy

Harten’s Interpolatory MR framework

Prediction by interpolatory reconstructions leads to (Interpolatory)
Subdivision Refinement schemes

Our notation: P = {Pk+1
k }Lk=0 Sequence of prediction operators

between consecutive resolution levels, associated to Grids Xk with Nk

points/relevant data. Pk
k = IRNk and

For 0 ≤ k < l ≤ L P l
k := P l

l−1P
l−1
l−2 · · ·P

k+1
k : RNk −→ RNl

I(x , ·) Data-independent ⇒ P l
k ∈ RNl×Nk

linear interpolatory subdivision schemes ⇒ Linear MR-T.

Our notation: MR-T between levels k < l , 0 ≤ k < l ≤ L

Mk,l : RNl −→ RNl Coarse data on RNk , fine data on RNl ,

Note that if zk ∈ RNk , and z l = P l
kz

k ↔ Mk,lz
l = (zk , 0, . . . , 0)
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Our MR-OPT strategy

A Two-Scale ‘parameter-reduction’ approach

Umin = argminU∈RNF (U) ≡ ε∗ = argminε∈RNF (U0 + ε), U0 ∈ RN

U ∈ RN , M0,1U = (V , d)
M,2-level MRT
← −− → U = M−1

0,1 (V , d) V , d ∈ RN/2

For linear MR-T and perturbations ’at the coarse resolution level’

M−1
0,1

(
(V , d) + (ε0,~0)

)
= U + M−1

0,1 (ε0,~0) = U + P0,1ε
0

U0 ∈ RN given initial gues,

Find ε0
∗ = argminε1∈RN/2F (U0 + P0,1ε

0) inital guess ε1
0 = 0.

Define U1 := U0 + P1
0ε

0
∗ ⇒ F (U1) ≤ F (U0)

Find ε∗ = argminε∈RNF (U1 + ε) initial guess ε0 = 0

Then Umin = U1 + ε∗
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Our MR-OPT strategy

A Multi-scale ‘parameter-reduction’ approach

Find zmin ∈ RN such that F (zmin) = minz∈RN F (z),

Initial data (given): z̄ =: zL,0 ∈ RNL ,

Find ε0
∗ = argminε0∈RN0F (zL,0 + PL

0 ε
0), Init. guess: ε0

0 = ~0 ∈ RN0

Define zL,1 := zL + PL
0 ε

0
∗, F (zL,1) ≤ F (zL,0)

Find ε1
∗ = argminε1∈RN1F (zL,1 + PL

1 ε
1), Init. guess: ε1

0 = ~0 ∈ RN1

Define zL,2 := zL,1 + PL
1 ε

1
∗ F (zL,1) ≤ F (zL,0)

....

Find εL∗ = argminεL∈RNLF (zL,L + εL), Init. guess: εL0 = ~0 ∈ RNL

Define zL,L+1 := zL + εL∗ = zmin

F (zL,L+1) ≤ F (zL,L) ≤ · · · ≤ F (zL,2) ≤ F (zL,1) ≤ F (zL,0)
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Our MR-OPT strategy

What are we doing?

zL,0 = z̄ M0,Lz
L,0 = M0,Lz̄ = (z̄0, d0(z̄), d1(z̄), · · · , dL−1(z̄))

M−1
0,L(z0

0 + ε0, d0(z̄), d1(z̄), · · · , dL−1(z̄)) = z̄ + PL
0 ε

0, ε0 ∈ RN0

Ξ0 := {zL,0 + PL
0 ε

0, ε0 ∈ RN0} (affine space, N0 degrees of freedom)

F0 : RN0 → R, F0(ε0) = F (zL,0 + PL
0 ε

0), ∀ε0 ∈ RN0

ε0
∗ = argminε0∈RN0F (zL,0 + PL

0 ε
0), = argminε0∈RN0F0(ε0)

zL,1 = zL,0 + PL
0 ε

0
∗ → zL,1 = argmin{F (z), z ∈ Ξ0}

F (zL,1) = F0(ε0
∗) ≤ F0(0) = F (zL,0) = F (z̄)

M0,Lz
L,1 = M0,Lz

L,0 + M0,LP
L
0 ε

0
∗ = (z̄0 + ε0

∗, d
0(z̄), d1(z̄), · · · , dL−1(z̄))
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Our MR-OPT strategy

What are we doing?

M0,Lz
L,1 = (

︷ ︸︸ ︷
z̄0 + ε0

∗, d
0(z̄), d1(z̄), · · · , dL−1(z̄))

z1
∗ := M−1

0,1 ((z̄0 + ε0
∗, d

0(z̄)) = M−1
0,1 ((z̄0, d0(z̄)) + P0,1ε

0
∗ ∈ RN1

⇒ M1,Lz
L,1 = (z1

∗ , d
1(z̄), · · · , dL−1(z̄))

and we can repeat the process with level 1 as the coarsest level.

At level k :

Ξk := {zL,k + PL
k ε

k , εk ∈ RNk} (affine space, Nk degrees of freedom)

Fk : RNk → R, Fk(εk) = F (zL,k + PL
k ε

k), ∀εk ∈ RNk

εk∗ = argminεk∈RNk F (zL,k + PL
k ε

k), = argminεk∈RNk Fk(εk)

zL,k+1 := zL,k + PL
k ε

k
∗ = arg min{F (z), z ∈ Ξk}
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Some theoretical results on MR/OPT
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Some theoretical results on MR/OPT

Quadratic minimization problems

Find zmin ∈ RN such that F (zmin) = min
z∈RN

F (z),

F (z) =
1

2
zTAz − bT z + c.

with A symmetric.

Proposition

If F is quadratic, and Fk(εk) := F (zL,k + PL
k ε

k), then

Fk(εk) =
1

2
(εk)TAkε

k − bTk εk + ck


Ak = (PL

k )TAPL
k ∈ RNk×Nk

bk = (PL
k )T (b − AzL,k) ∈ RNk

ck = F (zL,k)

is quadratic. If A ≥ 0, then Ak ≥ 0. If A > 0, then Ak > 0.
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Some theoretical results on MR/OPT

Proposition

Let F : RNL → R and Fk(εk) = F (ẑ + PL
k ε

k), ẑ ∈ RNL

1 If F is convex and/or F ∈ C2(RNL ,R), then Fk is also convex and/or
Fk ∈ C2(RNk ,R).

2 If the hessian matrix ∇2F (ξL) is a positive definite matrix ∀ξL ∈ RNL ,
then ∇2Fk(ξk) is a positive definite matrix ∀ξk ∈ RNk .

3 If F is coercive, i.e. lim||zL||∞→∞ F (zL) = +∞, then Fk is coercive.
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Some theoretical results on MR/OPT

Theorem

Let F ∈ C2(RNL ,R) be a convex coercive function such that ∇2F (ξL) is a
positive definite matrix ∀ξL ∈ RNL .

If the initial guess zL,0 and zmin = arg min{F (z), z ∈ RNL} can be
associated to the point evaluations on GL of sufficiently smooth functions,
then for 0 ≤ k < L,

1 ‖zmin − zL,k+1‖∞ = O(hn+1
k+1)

2 ‖zL,k+1 − zL,k‖∞ = O(hn+1
k )

where n is the degree of the interpolatory polynomials.
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Some theoretical results on MR/OPT

Summarizing ....

Quadratic and convex cost functions: The auxiliary problems are of
the same kind as the original problem.

Under ’certain smoothness conditions’ the distance between
consecutive sub-optimal solutions decreases as k increases (at a rate
that depends on the properties of the prediction schemes).

Even though the auxiliary minimization problems involve an increasing
number of degrees of freedom as k increases, we expect that they
might be efficiently solved due to the fact that their initial guess and
solution are increasingly closer.
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Numerical experiments
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Numerical experiments

We consider an ’off-the shelf’ (MATLAB) optimizer D
either fminunc or patternserach.

Stopping criteria for the optimizer: tolD

Stopping criteria for the MR-OPT: The max-norm of the difference
between two consecutive sub-optimal solutions is less than tolM . That
is,

‖zL,k+1 − zL,k‖∞ < tolM .

P Interpolatory subdivision on the interval of degrees n = 1, 3, 5 with
centered stencils on the interior and ’adjustments’ at the boundaries.
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Numerical experiments

Quadratic Optimization Problems: 1D

{
−u′′(t) + 2u(t) = f (t), t ∈ (0, 1)

u(0) = u(1) = 0.

where f (t) := 106t(1− t)(t − 1/2)(t − 1/4)(3/4− t). Using the standard
centered second order discretization for u′′ on a uniform grid in [0, 1] leads
to the linear system

(−zi−1 + 2zi − zi+1)J2 + 2zi = f (i/J), i = 1, 2, . . . , J − 1,

z0 = zJ = 0 because of the boundary conditions, J = N − 1.

We compute the solution of Ax = b by minimizing F (z) = 1
2z

TAz − bT z .

J = 128 = 27. L = 5, NL = O(102), N0 = 3 tolD = tolM = 10−6
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Numerical experiments

The sub-optimal solutions zL,1, zL,2, zL,3
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Figure: 1D BVP (D = fminunc). From left to right, for n = 1, 3, 5.

R.D., S.L.-U., M.M. (UV, IS&3D ENG) Section optimization via MR Data 31 / 43



Numerical experiments

Theoretical decay properties
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Figure: 1D BVP. Top row, D = fminunc; Bottom row, D = patternsearch.
Horizontal axis, k (resolution level).
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Numerical experiments

Theoretical decay properties

Numerical estimation of r from sub-optimal solutions.

r = log2
‖zL,k − zL,k−1‖∞
‖zL,k+1 − zL,k‖∞

.

n\k 1 2 3 4 5 Theoretical rate

1 -0.51 1.84 1.80 2.00 1.98 2

3 0.48 3.54 2.47 3.37 3.80 4

5 0.45 4.24 5.33 5.78 6.09 6

Table: 1D BVP. D = fminunc. (similar results with patternsearch)
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Numerical experiments

Efficiency of MR-OPT
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Figure: Ratio between the number of functional evaluations and the number of
degrees of freedom involved in the solution of the k-th auxiliary problem, versus
k . Left: D = fminunc; Right: D = patternsearch.

Table: Total number of functional evaluations required to find zL,L+1

# F -evaluations by n = 1 n = 3 n = 5 Direct-D
fminunc 38 678 17 089 8 910 49 980

patternsearch 101 307 742 7 938 578 1 063 433 176 168 800
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Numerical experiments

Quadratic Optimization Problems: 2D

−(uxx(x , y) + uyy (x , y)) = f (x , y),

u(x , y) = 0,

(x , y) ∈ int(Ω),

(x , y) ∈ ∂Ω,

Ω = [0, 1]× [0, 1], ∂Ω and int(Ω) denoting the boundary and the interior
of Ω.

f (x , y) = sin(4πx(1− x)y(1− y))

A standard discretization (using the classical 5-point Laplacian), on a
uniform grid leads to a system of equations that can be written in matrix
form as Az = b.

We solve the system by minimizing F (z) = 1
2z

TAz − bT z .

J = 1282 L = 5, NL = O(104), N0 = 9 tolD = tolM = 10−7
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Numerical experiments
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Figure: 2D Poisson problem, L = 5, tolM = tolD = 10−7. D is fminunc.

n 1 3 5 Direct-D
# of F -evaluations 2 742 108 41 206 11 136 12 581 010

n\k 1 2 3 4 5 Theoretical rate

1 1.84 1.91 1.89 1.95 1.98 2

3 5.27 3.36 4.14 4.27 - 4

5 6.72 7.59 3.62 - - 6

Table: 2D Poisson problem. Numerical decay rate
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A Non-quadratic, convex, problem: MINS

(from Frandi & Papini Optim. Meth. & Software 2014)

min
u

∫
Ω

√
1 + ‖∇u(x , y)‖2

2 d(x , y), Ω = [0, 1]× [0, 1]

with the boundary conditions

u0(x , y) =

{
x(1− x), if y ∈ {0, 1},
0, otherwise.

Its solution is approximated by the solution of the minimization problem that
results from considering as objective function

F (z) :=
1

2N2

N−1∑
i,j=0

√
1 + a2 + b2 +

√
1 + c2 + d2,

with

a = N(zi,j+1 − zi,j), b = N(zi+1,j+1 − zi,j+1),

c = N(zi+1,j+1 − zi+1,j), d = N(zi+1,j − zi,j).
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J = 1282 L = 5, NL = O(104), N0 = 9 tolD = tolM = 10−6
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Figure: Minimal surface problem. L = 5, tolM = tolD = 10−6 and D is fminunc.

interpolation degree n=1 n=3 n=5 Direct-D
total # evaluations 2 417 132 235 771 180 990 10 226 103
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Non-quadratic, non convex, problem: MOREBV

(from Frandi & Papini Optim. Meth. & Software 2014)

−(uxx(x , y) + uyy (x , y)) + 1
2 (u(x , y) + x + y + 1)3 = 0, (x , y) ∈ int(Ω),

u(x , y) = 0, (x , y) ∈ ∂Ω.

Ω = [0, 1]× [0, 1]

Using the classical 5-point discretization of the Laplacian, the resulting system of
nonlinear equations can be rewritten as a nonlinear least-squares problem with a
non-convex objective function given by the expression.

F (z) :=
N−1∑
i,j=1

(
(4zi,j − zi−1,j − zi+1,j − zi,j−1 − zi,j+1)

+
1

2N2
(zi,j + i/N + j/N + 1)3

)2

. (1)
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Figure: MOREBV problem. L = 7, tolM = tolD = 10−6 and D is fminunc.

interpolation degree n=1 n=3 n=5 Direct-D
total # evaluations 201 583 677 1 168 621 495 258 294 879 519
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Numerical experiments

Figure: The computed solution, zL,L+1, of the minimal surface (left) and the
MOREBV (right) problems taking n = 5.
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Numerical experiments

Conclusions : MR-OPT ...

Multilevel strategy to reduce the cost of solving optimization problems.

1 initial data provided by the user,

2 optimization tool and cost function are treated as black boxes

3 Numerical results show the efficiency of the technique

H-MRF is used to design a sequence of auxiliary optimization
problems that provide a finite sequence of sub-optimal solutions.

Each sub-optimal solution is the initial data for the auxiliary problem
at the next resolution level.

Under some ’smoothness assumptions’, we provide theoretical results
that justify the efficiency of the technique. Numerical experiments
show evidence.

’To do list ’ .....
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Happy birthday Albert!

Thanks for your attention
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