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The beginning ....
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underwater appendages such as the bulb, the keel or the rudder have an
important effect on performance.
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The beginning ....
Sections of appendages

In yacht design, appendages are often constructed from a basic planar
section a(t) = (x(t),y(t)), t € [0, 1],whose shape determines the drag
and lift generated by the appendage.

@ the problem: search for ways to get an 'optimal’ shape of a section
that minimizes the drag generated by the section ( while preserving
some structural features).
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The beginning ....

A 2D section: «(t) = (x(t), y(t)), t € [0,1]

(x(0),¥(0)) = (x(1), (1)) is the trailing edge.
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chord length

In particular, the interest was to reduce the drag coefficient while
preserving specific features of the section by performing some
perturbations of an original shape
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The beginning ....
Mathematical setting in a Discrete Framework

a= ()L, e=()Ly, — o =(a(t)+e)l,

D(«) (Drag Coefficient computed with Xfoil is a cost function )

Minimization Problem: Find . € RV : D(a*) = min_cgn D(af)

Compute a 'solution’ by using an appropriate (black-box) optimizer.

Initial guess: eg =0 = a®*° =«

The process is likely to be (very) slow for N moderately large .... among
other problems ...

The cost may be reduced by using a multiscale strategy
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The beginning ....
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Required: Minimize (Reduce ...) D(«) (computed with Xfoil)
Using: Black-box minimization tools (from MATLAB ):

o fminsearch
@ patternsearch

Computations carried out using 'our’ MSO (Multi-scale Optimization)
with L =7, Ny = 22.
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The beginning ....

Reducing the drag on a size-limited foil

Initial Profile: a discrete version of the NACA0010-profile.
The aim: to locally modify it to reduce ('minimize') D(«) at Re = 10°,
while maintainig 'some’ constraints.
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Figure: Initial profile: blue line. Output of a Multi-scale Optimization of the drag
coefficient while preserving chord length and max height: red line. The drag
coefficient is reduced from 9.21-1073 to 4.47 - 1073 .
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The beginning ....

RD, S. Lopez-Urefia, M. Mennec, ECMI Proceedings 2016

Realistic simulations: Complex Cost functions and Initial shapes (blue
lines) provided by 1S&3D ENG.

Improving a rudder shape from an initial NACAQ012 foil.
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The beginning ....

Let's try with an 'academic (Toy) example’ ....

Given the grid (t,-),?io = (i2_L),2io, compute the minimum of the
functional
F(a) := || — cos(2mx;)][3.

Minimization strategies:
@ Using the MATLAB fminsearch function directly.
@ Using the MATLAB fminsearch function combined with the MS-
Initial guess y; := A cos(2mx;), L=7N=2t=1028
Stopping Criteria:
diff. between two consecutive iterates < 10=% + Cost function < 10~

Maximum # of iterations in fminsearch (function evaluations): 10°.

Cost = Number of function evaluations.
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The beginning ....

#evaluations = 1758 #evaluations = 11957
; F(y) = 9.4822e-11 . F(y) = 3.2795e-09
——initial guess ——initial guess
08t ——output 1 08t ——output 1
- - - solution - - - solution
0.6 | 1 0.6 | 1
04 1 04 1
02F 1 02F 1
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02 1 0.2 | 1
04 | E 0.4 F 4
06 | 1 06 | 1
08| 1 08| 1
4 L L L L L 4 L L L L L
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# funct. eval.

MS | direct
1758 | 11957

A =0.999
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The beginning ....

Toy Problem

#evaluations = 4248 #evaluations = 100000
F(y) = 1.813e-10 F(y) = 0.00068117

1 1 ; ; ;
initial guess —initial guess L
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# funct. eval.

MR | direct
4248 | 10°
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The beginning ....

#evaluations = 11343
F(y) = 3.8568e-11

#evaluations = 100000
F(y) = 0.035836
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Our MR-OPT strategy

© Our MR-OPT strategy
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Our MR-OPT strategy
Discrete Multiresolution Framework

A multiresolution (MR) decomposition of a discrete data set is an
equivalent representation that encodes the information as a coarse
realization of the given data set plus a sequence of detail coefficients of
ascending resolution.

T s A S S

Nl N g2 N N0

ol = Mot = (a0, d%, d?, ..., db)

a

detail coefficients: difference in information between consecutive levels

Frameworks for MR:
o Wavelets (I. Daubechies, Y. Meyer, S. Mallat etc..)

e Lifting (W. Sweldens ... )
e Harten [Harten, 90's, RD, F. Arandiga A. Cohen ... 2000]
levels of resolution: Hierarchy of nested computational meshes
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Our MR-OPT strategy
Harten's Interpolatory MR framework

U Usi—1 Uziqa
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o) (e} (o] o] o) (o] o]
U(x2i) | | | | | | | |

I I I I I I 1

Viei V Vig
Decimation= Restriction to even values

Prediction = Via an interpolatory reconstruction Z(x, -)

{V,—Uz, }(—){ Ui = V; }
di = Uiy —I(xit1, V) Uoiv1 = ZI(xpi41, V) +d;

M 2-level MRT
UeRN, MU= (V,d) < =% U=MYV,d) V,deRN?
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Our MR-OPT strategy
Harten's Interpolatory MR framework

@ Prediction by interpolatory reconstructions implies Consistency
between the fine and coarse grid information:

U =2(x,V) = Uy =I(x,V)=V;= Uy

@ The details are interpolation errors at odd points on fine grid.
Well known behavior with respect to grid-size/smoothnes of
underlying data.
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Our MR-OPT strategy

MR transformation: finest level Xt

b e (T dt Y e {0 d0 dY e db Y = Mt

Xt HAAA A

Xl o o o o o o o o o o o o o o o o
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Our MR-OPT strategy
Harten's Interpolatory MR framework

e Prediction by interpolatory reconstructions leads to (Interpolatory)
Subdivision Refinement schemes

@ Our notation: P = {P,f“}kzo Sequence of prediction operators
between consecutive resolution levels, associated to Grids Xy with Ny
points/relevant data. P/(‘ = Ign, and

o I(x,-) Data-independent = P} € RN>MN«
linear interpolatory subdivision schemes = Linear MR-T.

@ Our notation: MR-T between levels k < [, 0 < k< [ <L
My RN — RN Coarse data on RN, fine data on R,

o Note that if zK € RN« and 2/ = P,’(zk > I\/Ik,/z’ = (z*,0,...,0)
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Our MR-OPT strategy

A Two-Scale ‘parameter-reduction’ approach

Umin = argminycgn F(U) = e = argmin_pnF(U° 4+¢), U° € RN
M,2-level MRT

UeRN, Mo U=(V,d) «——— U=M1(V,d) V,decRN?

For linear MR-T and perturbations 'at the coarse resolution level’

Mot ((V.d) + (0,0)) = U+ Mg1(2,0) = U + Pose”

o U° c RN given initial gues,

Find | €9 = argmin_i_gn/2 F(U° + Py 1£°) | inital guess £} = 0.

Define Ut := U° + P3<? = F(U') < F(U9)

e Find |e, = argmin__pnF(U! + ¢) initial guess gg =0

Then Unin = U + &,
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Our MR-OPT strategy

A Multi-scale ‘parameter-reduction’ approach

Find Zmin € RN such that F(zmin) = min,cpn F(2),
Initial data (given): z =: zb0 ¢ RN,
o Find €9 = argmin_o_pn, F(2-0 + P§<%), Init. guess: €§ = 0 € RN
Define zb1 := zL + PE0,  F(zH1) < F(219)
o Find €l = argmin_i_pn, F(z51 + Pfet), Init. guess: f = 0 e RM
Define z02 .= zb1 + plel  F(zb1) < F(2H0)
° ...
o Find L = argmin LGRNLF(ZL’L + b)), Init. guess: &b = 0 e RM
Define zbH = b el = 7 0

F(zH ) < F(2h < < F(29?) < F(2H) < F(2H9)
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Our MR-OPT strategy
What are we doing?

0=z My 20 = My, 7 = (2°,d°(2), dl(f) ,d"1(2)

Mot (2 +<°,d°(2), d*(2), - ,d""}(2)) = 2+ Pb0, L e RV

Zo:={zl0 + PEe0, O ¢ RN’} (affine space, No degrees of freedom)
Fo:RY SR, F(e0) = F(zH0 + PLe0), vl € RV
e% = argmin_o_pn, F (20 + P§e®), = argmin_o_pn, Fo(e°)
bt — L0 4 PoLeg N argmin{F(z), z € =o}

F(z"1) = Fo(e )<Fo(0) F(z"%) = F(2)
M07LZ 1 Mo LZ Lo +M0 LP (_ —‘re’i*,dO(Z),dl(f),”- ,dLil(f))
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Our MR-OPT strategy
What are we doing?

—_——~
Mozt = (2% + €, d%(2),d"(2),- - ,d"1(2))
zhi= My (20 + €2, d°(2)) = Mg (2%, d°(2)) + Poed € RY

*

= My zH = (z},dY(2), -, d"(2))
and we can repeat the process with level 1 as the coarsest level.
At level k:
o =y = {zbk 4 PLek ek e RNk} (affine space, Ny degrees of freedom)
o F iRV 5 R, F(eX) = F(zbk + PEeK), vek e RV
o cf = argmin__pn, F(zH5 + PLeX), = argmin_i_pw, Fi(eX)

o zbhktl .= Lk 4 plek — arg min{F(z), z € =4}
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Some theoretical results on MR/OPT

© Some theoretical results on MR/OPT
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Quadratic minimization problems

Find Zmin € RY such that F(Zmin) = min F(z),
z€RN

1
F(z) = EZTAZ —bTz+c.

with A symmetric.

If F is quadratic, and F(e¥) := F(zbk + PLek), then

. Ax = (PE)TAPLE € RNNk
Fi(e¥) = 5(5k)TAk£k —blex+ kS by = (PE)T (b — Azbk) € RN«
c = F(zH5)

is quadratic. If A> 0, then A, > 0. If A > 0, then A, > 0.
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Some theoretical results on MR/OPT

Let F: RNt — R and Fi(eX) = F(2 + PLeX), 2 e R
© If F is convex and/or F € C2(RN:,R), then Fy is also convex and/or
Fi € C?(RN« R).

@ |If the hessian matrix V2F(¢£L) is a positive definite matrix Vé- € RV
then V2F,(£¥) is a positive definite matrix V&< € RNk,

© If F is coercive, i.e. lim1)| o0 F(z") = +o0, then Fy is coercive.

v
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Some theoretical results on MR/OPT

Theorem

Let F € C?>(RN:,R) be a convex coercive function such that V2F(¢L) is a
positive definite matrix V&b € RN,

If the initial guess z50 and zpi, = arg min{F(z), z € RV} can be
associated to the point evaluations on G of sufficiently smooth functions,
then for 0 < k < L,

Q ||zmin — ZL’kH”oo = O(”Zii)
@ [|214+t — ZhK|, = O™

where n is the degree of the interpolatory polynomials.
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Some theoretical results on MR/OPT

Summarizing ....

@ Quadratic and convex cost functions: The auxiliary problems are of
the same kind as the original problem.

@ Under 'certain smoothness conditions’ the distance between
consecutive sub-optimal solutions decreases as k increases (at a rate
that depends on the properties of the prediction schemes).

@ Even though the auxiliary minimization problems involve an increasing
number of degrees of freedom as k increases, we expect that they
might be efficiently solved due to the fact that their initial guess and
solution are increasingly closer.
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Numerical experiments

@ Numerical experiments
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Numerical experiments

@ We consider an 'off-the shelf’ (MATLAB) optimizer D

either fminunc or patternserach.
@ Stopping criteria for the optimizer: tolp

@ Stopping criteria for the MR-OPT: The max-norm of the difference
between two consecutive sub-optimal solutions is less than toly,. That
is,

| 25Kt — ZbK|| o < toly.

@ P Interpolatory subdivision on the interval of degrees n = 1,3,5 with
centered stencils on the interior and 'adjustments’ at the boundaries.
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Numerical experiments
Quadratic Optimization Problems: 1D

{—u”(t) +2u(t) = f(t), te(0,1)
u(0) = u(1) =0.

where f(t) := 10%t(1 — t)(t — 1/2)(t — 1/4)(3/4 — t). Using the standard
centered second order discretization for u” on a uniform grid in [0, 1] leads
to the linear system

(—zii1+ 2z — zip1) 2+ 2z = F(i/)), i=1,2,...,0—1,
zg = zj5 = 0 because of the boundary conditions, J = N — 1.
We compute the solution of Ax = b by minimizing F(z) = %ZTAZ —b'z.

J=128=2". L=5 N, =0(10%),Ng=3 tolp = tolyy =10"°
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Numerical experiments

L1

sub-optimal solutions z**, z~

02 04 06 08 1 : 1

Figure: 1D BVP (D = fminunc). From left to right, for n =1,3,5.
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Numerical experiments

Theoretical decay properties
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Figure: 1D BVP. Top row, D = fminunc; Bottom row, D = patternsearch.
Horizontal axis, k (resolution level).

R.D., S.L.-U., M.M. (UV, IS&3D ENG) Section optimization via MR Data 32 /43



Numerical experiments
Theoretical decay properties

Numerical estimation of r from sub-optimal solutions.

P HZL’k _ ZL,kleoo
= log HZL,k+1 _ ZLJ(Hoo.

mk| 1 2 3 4 5 | Theoretical rate
1 |-051]184 180/ 2.00 | 1.98 2
3 0.48 | 3.54 | 2.47 | 3.37 | 3.80 4
5 | 0.45 | 424 | 533 | 5.78 | 6.09 6

Table: 1D BVP. D = fminunc. (similar results with patternsearch)

Section optimization via MR
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Efficiency of MR-OPT

# evaluations / # variables

102k

108

# evaluations / # variables

10° o

,
100

‘M
100

3 4 5

1

2 3

4 5

Figure: Ratio between the number of functional evaluations and the number of
degrees of freedom involved in the solution of the k-th auxiliary problem, versus
k. Left: D = fminunc; Right: D = patternsearch.

Table: Total number of functional evaluations required to find zbE+1
# F-evaluations by n=1 n=3 n=>5 Direct-D
fminunc 38678 17089 8910 49980
patternsearch | 101307742 | 7938578 | 1063433 | 176168800
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Numerical experiments
Quadratic Optimization Problems: 2D

(UXX(X y)"’”yy(x y)) = f(va)v (x,y)eint(Q),
u(x,y) = 0, (x,y) € 04,
Q =[0,1] x [0,1], 92 and int(2) denoting the boundary and the interior
of Q.
f(x,y) = sin(4mx(1 = x)y(1 - y))
A standard discretization (using the classical 5-point Laplacian), on a

uniform grid leads to a system of equations that can be written in matrix
form as Az = b.

We solve the system by minimizing F(z) = 27 Az — b' z.

J=128% L=5 N, =0(10*),Ny=9 tolp=toly =10""
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Numerical experiments
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Figure: 2D Poisson problem, L =5, toly = tolp = 10~7. D is fminunc.

n 1 3 5 Direct-D
# of F-evaluations | 2742108 | 41206 | 11136 | 12581010
m\k| 1 2 3 4 5 | Theoretical rate
1 |[184]191 189|195 1.98 2
3 | 527 |336|4.14 | 427 - 4
5 | 672|759 |362| - - 6

Table: 2D Poisson problem. Numerical decay rate
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Numerical experiments
A Non-quadratic, convex, problem: MINS

(from Frandi & Papini Optim. Meth. & Software 2014)

muin/Q V314 IVulx, )3 d(x,y), €=][0,1] x [0,1]

with the boundary conditions
x(1—-x), ifye{0,1},
UO(X7 }/) = ( ) Y { }
0, otherwise.

Its solution is approximated by the solution of the minimization problem that
results from considering as objective function

N—-1
1
F(z) =535 YoVit2+PR+V1+2+d?

ij=0
with
a=  N(zij1—z) b= N(zit111 — Zij+1),
c= N(zit1j+1— zit1),  d=N(zi41 — z))-
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Numerical experiments

J=128% L =5,

N; = 0(10%), Ng =9 tolp = tolpy = 107°

Lk+1 Lk
120 - 2=

# evaluations / # variables
0.

. -on=1},
o ©n=3
n=5
—
S
""""" a
3 4 5

Figure: Minimal surface problem. L =5, toly = tolp = 107 and D is fminunc.

interpolation degree

n=1

n=3

n=>5

Direct-D

total # evaluations

2417132

235771

180990

10226 103
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Numerical experiments

Non-quadratic, non convex, problem: MOREBV

(from Frandi & Papini Optim. Meth. & Software 2014)

7(UXX(X,y)+Uyy(X,y))+%(U(X,y)+X+y+1)3 = Oa (va) Eint(Q)7
ulx,y) = 0

Q =1[0,1] x [0,1]

Using the classical 5-point discretization of the Laplacian, the resulting system of
nonlinear equations can be rewritten as a nonlinear least-squares problem with a
non-convex objective function given by the expression.

F(z) = ((4z,-,,- —Zi-1j = Ziv1j — Zij-1 = Zijia)

1 2
+ 57 (i + N+ N+1) (1)
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Numerical experiments

# evaluations / # variables
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Figure: MOREBV problem. L =7, toly; = tolp = 107° and D is fminunc.

interpolation degree

n=1

n=3

n=>b

Direct-D

total # evaluations

201583677

1168621

495 258

294879519
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Numerical experiments

0.5 05

Figure: The computed solution, zb+1, of the minimal surface (left) and the
MOREBYV (right) problems taking n = 5.
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Numerical experiments

Conclusions : MR-OPT ...

Multilevel strategy to reduce the cost of solving optimization problems.

© initial data provided by the user,
@ optimization tool and cost function are treated as black boxes

© Numerical results show the efficiency of the technique

@ H-MREF is used to design a sequence of auxiliary optimization
problems that provide a finite sequence of sub-optimal solutions.

@ Each sub-optimal solution is the initial data for the auxiliary problem
at the next resolution level.

@ Under some 'smoothness assumptions’, we provide theoretical results
that justify the efficiency of the technique. Numerical experiments
show evidence.

@ 'Todo list ' .....
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Numerical experiments
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@ Each sub-optimal solution is the initial data for the auxiliary problem
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Numerical experiments

Happy birthday Albert!

Thanks for your attention
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