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A First Landmark

Biorthogonality and Riesz Bases

V={y:leT}. W={y:1eI} (denseinV)
(W, )y =1

Translation/dilation:  ;(x) = 2/2¢(2x — k), 1 < (j, k), |I| =27 = suppp;,  (x) = Xy ckb(@x — k), V = Lp(R)

A. Cohen, . Daubechies, J.-C. Feauveau, Communications on Pure and sty Muon!
4 Foundation &~ | RWTH

Applied Mathematics, Vol. XLV, 485-560 (1992) — 4381
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Biorthogonality and Riesz Bases

V={y:leT}y. V={:1ecI} (denseinV)
(W, W)y =1
Translation/dilation:  ;(x) = 2/2¢(2x — k), 1 < (j, k), |I| =27 = suppp;,  (x) = Xy ckb(@x — k), V = Lp(R)
» primal and dual multiresolution sequences:  {V;}, {¥;}
» room for customizations: splines, symmetry ~~ enhanced practicality

» Riesz basis property ?

el = || D e
leZ

L>(R)

» exploiting Fourier-techniques
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A Game Changer

This triggered ...
» refinable functions and subdivision schemes
» biorthogonal wavelets on an interval
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A Game Changer

This triggered ... the great days of the European projects ... and on Copa Cabana
» refinable functions and subdivision schemes
» biorthogonal wavelets on an interval
» biorthogonal wavelets on bounded domains and manifolds

- A. Cohen, W. Dahmen, R. DeVore, Multiscale decompositions on bounded domains, Trans. Amer. Math. Soc., No. 8, 352
(2000), 3651-3685.  National

- A. Cohen, |. Daubechies, P. Vial, Wavelets on the Interval and Fast Wavelet Transforms, Applleda p’ f.'.?..nal Hamﬁlc
Analysis, 1 (1993), 54-81 - 1463.

-W. Dahmen A. Kunoth K. Urban Biorthogonal wavelets on the interval - Stability and moment condltlons, Applied and

gony 190 102
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A Game Changer

This triggered ... the great days of the European projects ... and on Copa Cabana
» refinable functions and subdivision schemes
» biorthogonal wavelets on an interval
» biorthogonal wavelets on bounded domains and manifolds

» Applications e.g. to image compression/encoding, PDEs, boundary
integral equations ...

- A. Cohen, W. Dahmen, R. DeVore, Multiscale decompositions on bounded domains, Trans. Amer. Math. Soc., No. 8, 352
(2000), 3651-3685.

- A. Cohen, |. Daubechies, P. Vial, Wavelets on the Interval and Fast Wavelet Transforms, Applied and Computational Harmonic
Analysis, 1 (1993), 54-81 - 1463.

-W. Dahmen, A. Kunoth, K. Urban, Biorthogonal wavelets on the interval - Stability and moment conditions, Applied and
Computational Harmonic Analysis, 6 (1999), 132—196.

-A. Canuto, A. Tabacco, K. Urban, The wavelet element method, part |: Construction and analysis, Appl. Comp. Harm. Anal.,
6(1999), 1-52.

-A. Canuto, A. Tabacco, K. Urban, The wavelet element method, part Il: Realization and additional features, Appl. Comp. Harm.
Anal.

-W. Dahmen, R. Schneider, Wavelets on manifolds |. Construction and domain decomposition,
SIAM Journal on Mathematical Analysis, 31 (1999), 184-230.

-W. Dahmen, R. Schneider, Composite wavelet bases for operator equations, Math. Comp.,
68 (1999), 1533-1567.
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A Game Changer

This triggered ... the great days of the European projects ... and on Copa Cabana
» refinable functions and subdivision schemes
» biorthogonal wavelets on an interval
» biorthogonal wavelets on bounded domains and manifolds
>

Applications e.g. to image compression/encoding, PDEs, boundary
integral equations ...

» How about the Riesz basis property?

- A. Cohen, W. Dahmen, R. DeVore, Multiscale decompositions on bounded domains, Trans. Amer. Math. Soc., No. 8, 352
(2000), 3651-3685.

- A. Cohen, |. Daubechies, P. Vial, Wavelets on the Interval and Fast Wavelet Transforms, Applied and Computational Harmonic
Analysis, 1 (1993), 54-81 - 1463.
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Functions are (often) just Sequences
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Functions are (often) just Sequences

Riesz Bases: a “Fourier-Free” Approach

When are biorthogonal bases Riesz bases?
V={¢}iez, V={dtiex Wndr)=0r
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Riesz Bases: a “Fourier-Free” Approach

When are biorthogonal bases Riesz bases?
V={¢}iez, V={dtiex Wndr)=0r

Multiresolution:  V; := span {4 : |I|*1? <j}, %N/j := span {¢); : |I|’17 <j}
Theorem:

W,V are Riesz bases if (V})jen,, (¥})jen, both satisfy direct and inverse
inequalities w.r.t. some modulus w(-, t)

(J) vig{ IV = Vallv S w(v.p™") Yo e {Va,Vn}

(min{1,tp"})"[|Vallv, Vn € Vp,

(E;) u)(Vnat) :5 . -
(min{1,tp"})Y[|Vallv, Vo€ Va

W. Dahmen, Stability of multiscale transformations, Journal of Fourier Analysis and Applications, 2(1996), 341-361.
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Riesz Bases: a “Fourier-Free” Approach

When are biorthogonal bases Riesz bases?
V={¢}iez, V={dtiex Wndr)=0r

Multiresolution:  V; := span {4 : |I|*1? <j}, %N/j := span {¢); : |I|’17 <j}
Theorem:

W,V are Riesz bases if (V})jen,, (¥})jen, both satisfy direct and inverse
inequalities w.r.t. some modulus w(-, t)

(J) vig{ IV = Vallv S w(v.p™") Yo e {Va,Vn}

(min{1,tp"})"[|Vallv, Vn € Vp,

(B) W(Vna t) 5 . -
(min{1,tp"})Y[|Vallv, Vo€ Va

Important: rescaled versions of W remain Riesz bases for scales of spaces
“around” V

W. Dahmen, Stability of multiscale transformations, Journal of Fourier Analysis and Applications, 2(1996), 341-361.
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Besov Spaces

Wavelet characterization of function spaces:

1%p,1]

L~1, [¥p.s

IL . ~ 17 V)= <V7 QZp,I>

IVlBs(Lp(2)) = ||(|l|_5/dv/)ng(I)7 0<s<7v, 0<p<oo

~

» Besov spaces are interpolation spaces

» Full landscape of “Sobolev” embeddings

[CDD] an unfinished book ...
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Functions are (often) just Sequences

BV - correct form of Gagliardo-Nirenberg inequalities

laviey = supd [ Fiv(@) s g € CURLE) gl < 1}
Q

[¥illayrey = 1, fi = (f, ;) define |[(f)lloy := |[fllyre) ~
I(F)llov < 1(F)lle, i-e. £4(Z) C bv(Z)

Lo = [loo, 4411 /2,2 C (oo, BV]1 /2.2 C [oo, Wlilijp2 = £2 Ly = [B3)! 0, BV]1 /2.5
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lavie) = supd [ Fdiv(@) s g € CUR R gl < 1}
Q

l¥illsyesy = 1, fi=(f, 1) define |[()llo = [Ifllpy(ee) ~
IMllov < (F)lley 18- £4(T) € bv(T)

Theorem: d =2

(E)llwe, == Sugf#{/ €L:|f| > e} < Cllfllaye)
>

i.e., (1(Z) C bv(Z) C wt4(T)

2
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Q
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=0 el
e, (1(Z) C bv(T) c wil(T) iff neRrR
nER, (s—1p/d=n—1,t=(1-0)s+0, L =10 40,~
1|3y eaeey < ClIFll g 2, greyy IIfIIBv (R9)-
q=21=0,0=} ~p=oo,s=—1~ |}, SNl 1, Iflev T

Lo = [loo, 4111 /2,2 C oo, BV]1 /2.2 C [oo, Weili 22 = L2 Lp = B3 0, BV]1 /2.5

W. Dahmen (University of South Carolina, Those were the days, my friend ... 12/48



Functions are (often) just Seq
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Outline

O A Programmatic Compass
@ CDD - Operator Equations
@ UQ - Parametric PDEs, High Dimensionality
@ Reduced Bases, Model Reduction
@ State- and Parameter Estimation
@ Compressed Sensing
@ Nonlinear Widths
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A Programmatic Compass

Overarching Theme

» Problem formulation

» find performance benchmarks/measures

» constructive nonlinear solution concepts that ideally meet the
benchmarks ... best n-term approximation, linear or nonlinear

widths, Chebyshev radii ...
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A Programmatic Compass

... Played out in a Diversity of Areas ...

Image compression/encoding

Mathematical learning theory

Adaptive methods for operator equations

Compressed sensing

Uncertainty Quantification, high dimensional approximation
Model reduction

Inverse problems: state- and parameter-estimation, parameter
identification

vVvyVvyVvyVvyYyvyy
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A Programmatic Compass CDD - Operator Equations
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A Programmatic Compass CDD - Operator Equations

Equivalent /o-Reformulation  of Au=f

> A:V — V' isomorphism

» WV Riesz basis for V (typically) a rescaled version of an L,-Riesz basis
Theorem:
A= (AV)(V) = ((A)(Wr)), pers §:= (V) = (F(W1))iez =

Au=f & Au=f and A:/(, — (> isanisomorphism
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Equivalent /o-Reformulation  of Au=f

> A:V — V' isomorphism

» WV Riesz basis for V (typically) a rescaled version of an L,-Riesz basis
Theorem:
A= (AV)(V) = ((AL)(Wr) ) peg Ti= (V) = (F(WD))iez =

Au=f & Au=1f and A:/, — (o isanisomorphism

Proof: Forv =3, ;v =: v’V onehas

IVlle, = IVilv = IAVIy: = [(AV)(W)lle, = VT (AW)(W)]le,
=|vT Al vet O
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A Programmatic Compass CDD - Operator Equations

Equivalent /o-Reformulation  of Au=f

> A:V — V' isomorphism

» WV Riesz basis for V (typically) a rescaled version of an L,-Riesz basis
Theorem:
A= (AV)(V) = ((A)(Wr)), peps B = (V) = (F(W1))iez =

Au=f & Au=f and A:/(, — (> isanisomorphism

» l|dealized “fictitious” iteration in V
(F)  u"™'=u"+a(f—Au"), neNg

» Numerical scheme: “approximate” realization of (FI)
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A Programmatic Compass CDD - Operator Equations

Equivalent /o-Reformulation  of Au=f

> A:V — V' isomorphism

» WV Riesz basis for V (typically) a rescaled version of an L,-Riesz basis
Theorem:
A= (AV)(V) = ((A)(Wr)), peps B = (V) = (F(W1))iez =

Au=f & Au=f and A:/(, — (> isanisomorphism

» l|dealized “fictitious” iteration in V
(F)  u"™'=u"+a(f—Au"), neNg

» Numerical scheme: “approximate” realization of (FI)

...at no stage is there any fixed discretization ...
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A Programmatic Compass CDD - Operator Equations

Ingredients

Approximately realize: u™' =u”" + o(f — Au")

e Approximation spaces:  A®:={v € £»(Z) : ap(v) < n~°}

Ope)(¥) < € ~ n(e) ~ e /8
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Ingredients
Approximately realize: u™' =u”" + o(f — Au")

e Approximation spaces:

Ope)(¥) < € ~ n(e) ~ e /8

AS:={V € lo(T) : on(v) < N~}

e Coarsening lemma: |If |ju—v|, <7 threshold ~ v, s.t. |[Vv—Vv,|, <7

ue A = u-vyl, <2y #v, <y
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Ingredients
Approximately realize: u™' =u”" + o(f — Au")

e Approximation spaces:  A®:={v € £»(Z) : ap(v) < n~°}

Tn(e)(V) < e ~ n(e) ~ e—1/s
e Coarsening lemma: If [u—vll;, <7 threshold ~ v, s.t. [[v—v,ll, <7

uc A = Ju-vl,<2p #v, <y
e Adaptive application of A:

[AAP, Aljv = w; .= AN + Aj—1 (Vi) = Vioy) + -~ + Ao(Vyg — Vjj—1)) ~

Theorem:
A s*-compressible, v € A° w, := [AAP A|,v =

W, — AV, <1, #W,, flops <5~ "/
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Best n-Term Performance

Algorithm: f—u(c)~ A™'f
» Derive accuracy-tolerances from fictitious iteration
» Compute approximate residuals using Apply A

» Coarsen

Theorem:

If Ais s*-compressible, u € A5 (s < s*), then u(e) satisfies

lu—u(e)llv <& flops, #suppu(e) < e /%, [lu(e)llas < [luflas
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* Foundation ~ | RWIH
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A Programmatic Compass CDD - Operator Equations

discrete solution (adapive), N = 47 discrete soluton (adaptive), N = 138

discrete soluion, N = 1802
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A Programmatic Compass CDD - Operator Equations

Nonlinear approximation is governed by Besov regularity
Remark:

For d = 2 the strongest singularity solutions (ug, ps) of the Stokes problem on an L-shaped
domain in R2 belong to the scale of Besov spaces for any s > 0. Sobolev regularity <
1.544483..., resp. 0.544483.... Thus arbitrarily high asymptotic rates can be obtained by
adaptive schemes of correspondingly high order.... adaptivity stabilizes

s

. National
Science

Foundation ~{ | RWTH

Figure: Embedding in H!
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A Programmatic Compass CDD - Operator Equations

Stokes Problem

Solution u Solution v

il

i
il
= i) @
‘m‘ é,‘"ﬂ” N

fl |'&‘\\\\\
IR
i N

;I',':,',',',l,llyll,ll

/)

([Tt

\\\\\\m‘@‘\\\
W

Figure: Exact solution for the first example. Velocity components (left and
middle) and pressure (right). The pressure functions exhibits a strong
singularity BNSE iy
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A Programmatic Compass CDD - Operator Equations

Stokes Problem

Figure: Exact solution for the second example. Velocity components (left and
middle) and pressure (right).
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Anything beyond?

Indefinite and semilinear problems
Boundary integral equations

Adaptive finite element methods

>

>

» Adaptive eigenvalue problems
>

» Low-rank and tensor methods

Science e
Foundation ~{ | RWTH
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A Programmatic Compass CDD - Operator Equations
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A Programmatic Compass UQ - Parametric PDEs

Contents

O A Programmatic Compass

@ UQ - Parametric PDEs, High Dimensionality
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A model problem in UQ

A family of uniformly elliptic problems p € Y

—div(a(p)Vu) =finQ, ulpa =0, O0<r<alp)<R ~u=u(p)
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A model problem in UQ

A family of uniformly elliptic problems p € Y

—div(a(p)Vu) =finQ, ulpa =0, O0<r<alp)<R ~u=u(p)

A single variational problem: find u € U := Lp(Y; H}(R)) such that for
felo(V;H Q) =T

a(u,v) = //a(p)VwVvdxdu(p) = /f(v)du(p) = F(v), vel
Yy a R%

W. Dahmen (University of South Carolina, Those were the days, my friend ... 27/48



A model problem in UQ

A family of uniformly elliptic problems p € Y
—div(a(p)Vu) =finQ, ulpa =0, O0<r<alp)<R ~u=u(p)

A single variational problem: find u € U := Lp(Y; H}(R)) such that for
felo(V;H Q) =T

a(u,v) = //a(p)VwVvdxdu(p) = /f(v)du(p) = F(v), vel
Yy a R%

» Holomorphy of p — u(p)
» Analysis of Taylor and sparse Legendre expansions
» Summability of ([|(-)|[L..@))jen In a(x, p) = a(x) + >_jen pj@j(x)

= lu—=unllv <N, neN
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A Programmatic Compass UQ - Parametric PDEs
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A Programmatic Compass UQ - Parametric PDEs

Back to CDD - Low Rank and Tensor Methods for UQ

[

2]

[3]

4]

Tensor product orthonormal (in p) wavelet basis for U = Lo(Y; H{(Q))
a(u,v) = F(v) < Au=f~un(x,p) =g vu(x)k(p)
Compressibility of A, adaptive application of A

Coarsening lemma for tensor recompression with respect to ranks and
mode representations

Near optimal n-term complexity under model assumptions derived from
theoretical results

M. Bachmayr, A. Cohen, and W. Dahmen, Parametric pdes: Sparse or low-rank approximations?, IMA Journal of
Numerical Analysis 38 (2018), 1661-1708.

M. Bachmayr and W. Dahmen, Adaptive near-optimal rank tensor approximation for high-dimensional operator equations,
Found. Comput. Math. 15 (2015), no. 4, 839-898.

M. Bachmayr and W. Dahmen, Adaptive low-rank methods for problems on sobolev spaces with error control in lo, ESAIM:
Mathematical Modelling and Numerical Analysis 50 (2016), 1107—-1136.

M. Bachmayr and W. Dahmen, Adaptive low-rank methods: Problems on Sobolev spaces, ]
SIAM J. Numer. Anal. 54 (2016), 744-796. E:
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A Programmatic Compass Reduced Bases

A Greedy Space Method ...Maday, Patera, Rozza, ...

V a Hilbert space, £ c V compact
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A Greedy Space Method ...Maday, Patera, Rozza, ...
V a Hilbert space, £ c V compact
Greedy Algorithm

(i) choose vy € K, Vg := span vy

(i) givenV, C V,do

Vpit := argmax |V — Py, V]ly, Vg1 :=spanVp1 + V,
veK
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A Greedy Space Method ...Maday, Patera, Rozza, ...
V a Hilbert space, £ c V compact
Greedy Algorithm

(i) choose vy € K, Vg := span vy

(i) givenV, C V,do

Vpit := argmax |V — Py, V]ly, Vg1 :=spanVp1 + V,

ver
v
dy(K)y := inf s w— Py w
)y =t sup [w — Pyl
dimV,=n
Theorem: [BCDDPW], [DPW]
— —

= O’n(]C)V ‘= sup HU - PV,,UHV 5
uekl
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A Programmatic Compass Reduced Bases

Practical Relevance

IC solution manifold of a parametric PDE model: the following suffice to
guarantee Kolmogorov-rate-optimality

» weak greedy concept: vp1 € K such that for some v > 0

inf |Vhe1 — Vv > v—Pyv
Jnf Vs = vy = ymax|v — Py, vily
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IC solution manifold of a parametric PDE model: the following suffice to
guarantee Kolmogorov-rate-optimality

» weak greedy concept: vp1 € K such that for some v > 0

inf |Vhe1 — Vv > v—Pyv
Jnf Vs = vy = ymax|v — Py, vily

» Well posed PDEs: ||v — u(p)|lv = ||R(p; V)||y», vEV
~- suffices to maximize residual ||R(p; v)|v- over a finite training set
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Jnf Vs = vy = ymax|v — Py, vily

» Well posed PDEs: ||v — u(p)|lv = ||R(p; V)||y», vEV
~- suffices to maximize residual ||R(p; v)|v- over a finite training set

» dim) > 1: ~» Curse of dimensionality ... remedy: for holomorphic
parameter-to-solution maps trade algebraic growth of training sets
against slightly weaker rates in probability
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Practical Relevance

IC solution manifold of a parametric PDE model: the following suffice to
guarantee Kolmogorov-rate-optimality

» weak greedy concept: vp1 € K such that for some v > 0

inf |Vhe1 — Vv > v—Pyv
Jnf Vs = vy = ymax|v — Py, vily

» Well posed PDEs: ||v — u(p)|lv = ||R(p; V)||y», vEV
~- suffices to maximize residual ||R(p; v)|v- over a finite training set

» dim) > 1: ~» Curse of dimensionality ... remedy: for holomorphic
parameter-to-solution maps trade algebraic growth of training sets
against slightly weaker rates in probability

» Degenerate elliptic models - high contrast problems

» Applications to state- and parameter-estimation
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A Programmatic Compass State- and Parameter Estimation

Examples

Surface electrodes

Yoy v

Thorax

Abdomen

Z 1

PP o Voltage
Electrode leads

R

EIT device

Measurements: pressure heads, voltages
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A Programmatic Compass State- and Parameter Estimation

Data .. and“Sensors” - PBDW

“Sensor functionals”:
zi=/(i(u), ¢eU, i=1,...,m, fixed

Y. Maday, A.T. Patera, J.D. Penn and M. Yano, A parametrized-background data-weak
approach to variational data assimilation: Formulation, analysis, and application to acoustics,
Int. J. Numer. Meth. Eng. 102, 933-965, 2015.
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Data .. and*“Sensors” - PBDW
“Sensor functionals”:
zi=/(i(u), ¢eU, i=1,...,m, fixed
Ideally: Recover u from:
_ T m
e z2=(2,...,Zyn)' €R

e exploiting that u e M :={u(p) : p € V}
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approach to variational data assimilation: Formulation, analysis, and application to acoustics,
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Data .. and“Sensors” - PBDW

“Sensor functionals”:
zi=/(i(u), ¢eU, i=1,...,m, fixed
Ideally: Recover u from:
o z=(z,...,Zy)" €R™
e exploiting that u e M :={u(p) : p € V}
Guiding questions:

what can be achieved at best? - what are intrinsic estimation limits?
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zi=/(i(u), ¢eU, i=1,...,m, fixed
Ideally: Recover u from:
o z=(z,...,Zy)" €R™
e exploiting that u e M :={u(p) : p € V}
Guiding questions:

what can be achieved at best? - what are intrinsic estimation limits?
Optimal recovery perspective, Chebyshev radii ...
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A Programmatic Compass State- and Parameter Estimation

Data .. and“Sensors” - PBDW

“Sensor functionals”:
zi=/(i(u), ¢eU, i=1,...,m, fixed
Ideally: Recover u from:
o z=(z,...,Zy)" €R™
e exploiting that u e M :={u(p) : p € V}

Guiding questions:

what can be achieved at best? - what are intrinsic estimation limits?

Optimal recovery perspective, Chebyshev radii ...
Sensor coordinates (¢, V)y = ¢4i(v), ve U
W= span{¢}[, U=Wa W, (u) Pyu

. National
Science

Y. Maday, A.T. Patera, J.D. Penn and M. Yano, A parametrized-background data-weak
approach to variational data assimilation: Formulation, analysis, and application to acoustics,
Int. J. Numer. Meth. Eng. 102, 933-965, 2015.

W. Dahmen (University of South Carolina, Those were the days, my friend ...

Foundation

36/48



State- and Parameter Estimation

A Programmatic Compass

the Prior - one-Space Method, PBDW

Relaxing

Un C U, dist (M,Un)U S En

Suppose we have
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State- and Parameter Estimation

A Programmatic Compass

Relaxing the Prior - one-Space Method, PBDW

Un C U, dist (M,Un)U S En

Suppose we have

SEn}DM

U

)

,Un

={ueU:dist(u

K(Un, an) .

é\\s§\§\§\§§\§§§\\\§&\%\\5\3“\\\&%\\

37/48

Those were the days, my friend ...

men (University of S




State- and Parameter Estimation

A Programmatic Compass

Relaxing the Prior - one-Space Method, PBDW

Un C U, dist (M,Un)U S En

Suppose we have

SEn}DM

U

)

,Un

={ueU:dist(u

K(Un, an) .

Ewc(M, W) is hard to achieve
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A Programmatic Compass State- and Parameter Estimation

Relaxing the Prior - one-Space Method, PBDW

Suppose we have U, C U, dist(M,Up)y < en

K(Un,en) :={u € U:dist(u,Un)y < en} DM
Ewc(KK(Un,en), W) is easy to achieve

Un A, (W) := u*(w) = argmin ||u — Py, ully
uew+w-L
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g
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A Programmatic Compass State- and Parameter Estimation

Relaxing the Prior - one-Space Method, PBDW

Suppose we have U, C U, dist(M,Up)y < en

K(Un,en) :={u € U:dist(u,Un)y < en} DM
Ewc(KK(Un,en), W) is easy to achieve

Agy(W) i= u*(w) = argmin lu— Py, ully
uew+w-L

/

~

/

= : Ivi
X e U
= pu(Up, W) = max ————
= 1(Un, W) = max [Py vy

7

Then

i

4

ax [[u— u*(Pyu)|| < max||u— u*(Pwu)|| =
u"e‘XiH (w)ll_g\e;éH (Pwu)ll = pnen

<,

N e
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A Programmatic Compass State- and Parameter Estimation

Relaxing the Prior - one-Space Method, PBDW

Suppose we have U, C U, dist(M,Up)y < en

K(Un,en) :={u e U:dist(u,Un)y <en} DM
Ewc(KK(Un,en), W) is easy to achieve

Ay, (w) == u*(w) = argmin |lu— Py, ully
uew+w-L

?‘*(71’,)/"l}/€(U7La €n) Theorem:

Ivilu
S = u(Up, W) = max ———
pin = (Un, W) = max [Py vy
Then

ax [[u— u*(Pyu)|| < max||u— u*(Pwu)|| =
unrel/éH (w)II,g\e;éH (Pwu)ll = pnen

Noise: [|u—u™(Pwu+n)ll < (Un, W)(dist(u, Un) +|7ll) |
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A Programmatic Compass Compressed Sensing

Sparse Recovery Problem

Encoder: ¢ e R™N n<« N R [ I .

Decoder: A :R" RN N ;A

Yy = {z € RN : #supp (2) < k} b @
RWTH

W. Dahmen (University of South Carolina, Those were the days, my friend ... 40/48



A Programmatic Compass Compressed Sensing

Sparse Recovery Problem

Encoder: ¢ e R™N n<« N v—e|= | I @
Decoder: A :R" RN N ;*
Yy = {z € RN : #supp (2) < k} b @
For how large k 3(®,A) s.t. x = A(dx) for x € L?
Instead: Best k-term approximation
Uk(X)(p = zienék ||X — Z”gp
RWTH
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A Programmatic Compass Compressed Sensing

Sparse Recovery Problem

Encoder: ¢ e R™N n<« N R [ I .
Decoder: A :R" RN N
Yy = {z € RN : #supp (2) < k} b= cand 1

For how large k 3(®,A) s.t. x = A(dx) for x € L?
Instead: Best k-term approximation
Uk(X)(p = zienék ||X — Z”gp

Question:
Given ¢,, N, n, how large can k be s.t. 3 ($, A) with

IX = A(®X)[lg, < Cook(X)e,, VX €RN  (10(4p, k))

s\

—
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A Programmatic Compass Compressed Sensing

Known since the 70’S  The Maximal Sparsity Range

E,n(K)x = inf s X — A(dx
nN(C)x (<I>,Al)neAn,ng;FéH (®x)lx

=:ok(K)x

Kashin, Gluskin/Garnaev N/ gn(U(eN)) g, ~ Enn(U(EN))e, < k=172

~» Kk < con/log(N/n)
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Null Space Property and Instance Optimality

N = N(®) null space of &; 10(X, k): ||x — A(®x)|lx < Cook(X)x
Theorem:

e Inessence: 3 A suchthat (IO(X,k))iff  |[n]lx <oe(n)x, neN

e for X =¢) RIP = Null Space Property

Restricted isometry property - RIP(k., 0)

(1 =0)zlle, < [[®2lle, < (1 +9)l|2lles 2 € Tk
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A Programmatic Compass Compressed Sensing

A Subtle Dependence on Norms
Theorem: X = ¢}
Let & satisfy RIP(3k,d), d <do and  A(y) := argming,_,, [|Z]|e,

= |Ix = A@@X)|le, < CO)ok(X)e, ., (®,A)is 10(t4, k)
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A Subtle Dependence on Norms

Theorem: X = ¢}
Let & satisfy RIP(3k,d), d <do and  A(y) := argming,_,, [|Z]|e,

= x—A@X)]e < C()ok(x)e, ie., (B, A)is 10(4, k)

Theorem: X = /4
(b,A) is 10(f2,1) = n> aN.

W. Dahmen (University of South Carolina, Those were the days, my friend ... 43/48



A Subtle Dependence on Norms

Theorem: X = ¢}
Let & satisfy RIP(3k,d), d <do and  A(y) := argming,_,, [|Z]|e,

= x—A@X)]e < C()ok(x)e, ie., (B, A)is 10(4, k)

Theorem: X = /4
(b,A) is 10(f2,1) = n> aN.

BUT: IOP “in probability” is feasible in ¢»
Theorem:

Let @ from a family of random matrices that satisfy RIP of order 2k and BP
with high probability. Then 3 A such that for each x € RV, drawing ¢, yields

[ X — A(®x)[le, < Cook(X)e,, Kk < n/log(N/n) with high probability
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A Programmatic Compass Nonlinear Widths

Stability Limits Performance ...
X Banach space

Up H vV — (E(V))||X7 D, E subject to constraints

» D, E continuous ~» manifold widths

» D, E Lipschitz ~ stable widths

» Carl's Inequality:  en(K)x = inf{e > 0: N (K) < 2"}
D, D o E Lipschitz, E(K) bounded ~~

sup ' (log, N)~"en(K)x < Csup n'd, n(K)x.
neN neN

» Operator Learning ...

- A. Cohen, R. DeVore, G. Petrova, P. Wojtaszczyk, Optimal stable nonlinear approximation, Found. Comput. Math., 22 (2022),

- G. Petrova, P. Wojtaszczyk, Limitations on approximation by deep and shallow neural networks,Jou Rhathithe Learnmg
Research 24 (353), 1-38 Dec 2022,

pp. 607-648. National
- R. DeVore, R. Howard, C. Micchelli, Optimal non-linear approximation, Manuscripta Math. 4 (1989@-418

W. Dahmen (University of South Carolina, Those were the days, my friend ... 46/48



A Programmatic Compass Nonlinear Widths

Operator Learning ...

» no gain for classical smoothness classes

» perhaps more to come on model classes defined by structural sparsity ...
better describing solution manifolds

» modifications?

(S, )z v = . mf]R” max IS(v) — D(E(V))|lu,
D:R"—U

» Manifold widths of solution manifolds of high-dimensional transport
equations avoid the Curse of Dimensionality

W. Dahmen, Compositional Sparsity, Approximation Classes, and Parametric Transport Equations, Constructive Apoproximation,

61 (2025), 219-283.
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Those are the days, my friend ...

... and many more to come, santé ! ...
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