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Context : Modeling a molecular system
Water molecule : O

HH

▶ K = 3 nuclei → quantum particles

described by

(2 hydrogen and 1 oxygen)

positions and velocities

▶ M = 10 electrons → quantum particles

described by a
wavefunction

Ground state : state of lowest energy of a system : energy minimization
Time-independent Schrödinger equation : (1926)
Parameters : Nuclei configuration {Rk}k=1..K .
Unknowns : Ψ(r1, r2, . . . , rM) wavefunction, E energy.(

−1
2

M∑
i=1

∆ri + V ne
Rk

)
Ψ(r1, r2, . . . , rM) = EΨ(r1, r2, . . . , rM),

Computational cost :
1030 unknowns for the water molecule discretized with 10 points per
dimension.
Untractable even for small systems
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Density and pair density
R, configuration of the nuclei

Density ρR(x) =
∫
R3(N−1)

|ΨR(x , x2, . . . , xN)|2

Pair density τR(x , y) =
∫
R3(N−2)

|ΨR(x , y , x3, . . . , xN)|2
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Aim : Approximate pair density τR from density ρR

Motivation : Energy efficiently approximated with density, and pair density

Fixed number of electrons
∫
R6
τR(x , y) dx dy =

∫
R3
ρR(x) dx = 1.
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Model-order reduction for the pair density
Objective : New reduced-order models
▶ Database τR , R ∈ Rtrain with one-body densities ρR
▶ Construct approximations τ̃R of τR using ρR for R ∈ R

Link between one-body and two-body densities∫
R3
τR(x , y) dy = ρR(x),

∫
R3
τ̃R(x , y) dy = ρR(x)

Marginal constraint

Translation invariance
If c ∈ R3 is a translation vector, it must hold that

ρR+c = ρR(· + c), τR+c = τR(· + c, · + c), τ̃R+c = τ̃R(· + c, · + c)
Optimal transport

Optimal transport for model order reduction :
[Iollo, Lombardi, 2014] [Ehrlacher, Lombardi, Mula, Vialard, 2020] [Iollo,
Taddei, 2022] [Do, Feydy, Mula,2023] [Rim, Peherstorfer, Mandli, 2023]
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Wasserstein distance

Originally introduced by Monge : moving a pile of sand efficiently to cover a
sinkhole

Wasserstein distance : for u, v ∈ P2(Ω)2 as

W2(u, v)2 := inf
π∈Π(u,v)

∫
Ω2

(x − y)2 dπ(x , y),

Π(u, v) : set of probability measures over Ω2 with marginals u and v .
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Wasserstein barycenters
▶ n probability measures ρ1, . . . , ρn
▶ n positive weights λ1, . . . , λn summing to 1

Barycenter is a solution to the problem

inf
u∈P2(Ω)

n∑
i=1

λiW2(u, ρi)2.

Agueh, Carlier : Barycenters in the Wasserstein Space. SIAM J. Math. Anal. (2011).

Gangbo, Swiech : Optimal maps for the multidimensional Monge–Kantorovich problem. Commun. Pure Appl. Math. (1998)
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Optimal transport between Gaussian measures

Notation : N (µ, S)

If ρ0 = N (µ0, S0) and ρ1 = N (µ1, S1), it holds that

W 2
2 (ρ0, ρ1) = ∥µ0 − µ1∥2 + W2(S0,S1)2

where W2(S0, S1) is the Bures-Wasserstein distance between S0 and S1,
defined as

W2(S0, S1)2 = Tr
(

S0 + S1 − 2
(√

S0S1
√

S0
)1/2

)
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Wasserstein barycenters between Gaussian measures
Setting :

M ∈ N⋆

λ = (λ1, . . . , λM) ∈ ΛM
ρ = (ρ1, . . . , ρM) ∈ P2(Rn)M

for all i ∈ {1, . . . ,M}, ρi = N (µi , Si)

Wasserstein barycenter :
Bart(ρ) = N (µ⋆, S⋆)

where

µ⋆ =
M∑

m=1
λmµm

and S⋆ ∈ Sn
+,⋆ is the unique symmetric positive definite matrix solution to

the following equation
M∑

m=1
λm
(√

S⋆Sm
√

S⋆

)1/2
= S⋆.

In the sequel, we will denote S⋆ by Barλ
W2(S) where S := (S1, . . . ,SM).
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Illustration
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Approach
▶ Offline phase :

1. Database : Choose values R ∈ Rtrain and compute
ρR and τR , R ∈ Rtrain (snapshots)

2. Greedy algorithm : Select R1,R2, . . . ,RM ∈ Rtrain with M ∈ N⋆

(small) so that,
∀ R ∈ Rtrain, τR ≈ Barλ

W2(τR1 , . . . , τRM ) for some λ ∈ ΛM .
(1) eq:pbm1

▶ Online phase :

For a new value R ∈ R,
1. Compute ρR (out of a one-body density model)
2. Compute λR ∈ ΛM so that

ρR ≈ BarλR
W2

(ρR1 , . . . , ρRM ) for some λR ∈ ΛM .

3. Compute τ̃R ∈ ΛM as
τ̃R = BarλR

W2
(τR1 , . . . , τRM ). (2) eq:pbm2

Issue related to marginals !
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Issue related to marginal constraints

We would like that

τR ≈ Barλ
W2(τR1 , . . . , τRM ) ⇒ ρR ≈ Barλ

W2(ρR1 , . . . , ρRM )

Not true in general !

Idea : Marginal-constrained modified Wasserstein barycenters

So far (and talk of today) : marginal-constrained modified Wasserstein
barycenters for
▶ Gaussian distributions
▶ Gaussian mixtures

Extension to general distributions is work in progress !

[Abraham, Abraham, Bergounioux, Carlier, 2017] Marginal constraint
enforced using penalization

14 / 25



Issue related to marginal constraints

We would like that

τR ≈ Barλ
W2(τR1 , . . . , τRM ) ⇒ ρR ≈ Barλ

W2(ρR1 , . . . , ρRM )

Not true in general !

Idea : Marginal-constrained modified Wasserstein barycenters

So far (and talk of today) : marginal-constrained modified Wasserstein
barycenters for
▶ Gaussian distributions
▶ Gaussian mixtures

Extension to general distributions is work in progress !

[Abraham, Abraham, Bergounioux, Carlier, 2017] Marginal constraint
enforced using penalization

14 / 25



Issue related to marginal constraints

We would like that

τR ≈ Barλ
W2(τR1 , . . . , τRM ) ⇒ ρR ≈ Barλ

W2(ρR1 , . . . , ρRM )

Not true in general !

Idea : Marginal-constrained modified Wasserstein barycenters

So far (and talk of today) : marginal-constrained modified Wasserstein
barycenters for
▶ Gaussian distributions
▶ Gaussian mixtures

Extension to general distributions is work in progress !

[Abraham, Abraham, Bergounioux, Carlier, 2017] Marginal constraint
enforced using penalization

14 / 25



Issue related to marginal constraints

We would like that

τR ≈ Barλ
W2(τR1 , . . . , τRM ) ⇒ ρR ≈ Barλ

W2(ρR1 , . . . , ρRM )

Not true in general !

Idea : Marginal-constrained modified Wasserstein barycenters

So far (and talk of today) : marginal-constrained modified Wasserstein
barycenters for
▶ Gaussian distributions
▶ Gaussian mixtures

Extension to general distributions is work in progress !

[Abraham, Abraham, Bergounioux, Carlier, 2017] Marginal constraint
enforced using penalization

14 / 25



Issue related to marginal constraints

We would like that

τR ≈ Barλ
W2(τR1 , . . . , τRM ) ⇒ ρR ≈ Barλ

W2(ρR1 , . . . , ρRM )

Not true in general !

Idea : Marginal-constrained modified Wasserstein barycenters

So far (and talk of today) : marginal-constrained modified Wasserstein
barycenters for
▶ Gaussian distributions
▶ Gaussian mixtures

Extension to general distributions is work in progress !

[Abraham, Abraham, Bergounioux, Carlier, 2017] Marginal constraint
enforced using penalization

14 / 25



Outline

Motivation : model-order reduction for electronic structure calculations

A few results on optimal transport

Approach : from density to pair density

Marginal-constrained Wasserstein barycenters between Gaussian mixtures

Numerical results

15 / 25



Marginals of Gaussian measures
Setting : n = nx + ny for some nx , ny ∈ N⋆.

If τ = N (µ, S)

µ =
(
µx
µy

)
, S =

(
Sx Sxy
ST

xy Sy

)
,

margx (τ) = N (µx ,Sx ) and margy (τ) = N (µy , Sy )

Question : Find the closest Gaussian distribution τ = N (µ,S) to τref =
N (µref ,T ) with marginals

margx (τ) = N (µx ,Sx ) and margy (τ) = N (µy , Sy ),

that is
inf W2(τref , τ)2

Partial answer : Necessarily,

µ =
(
µx
µy

)
, S =

(
Sx Z
ZT Sy

)
for some Z ∈ Rnx ×ny .
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Main result
Theorem [Dalery, GD, Ehrlacher, 2025]
Let nx , ny ∈ N∗ and let T ∈ Snx +ny

+,⋆ with block decomposition

T =
(

Tx Txy
T ⊺

xy Ty

)
(3) eq:blockdecomp

Denote for Z ∈ CSx ,Sy :=
{

Z ∈ Rnx ×ny , ∥S−1/2
x ZS−1/2

y ∥2 < 1
}

S(Z ) :=
(

Sx Z
Z⊺ Sy

)
. (4) eq:defC

The function F defined as

F : CSx ,Sy ∋ Z 7−→ W2(T ,S(Z ))2

is strictly convex. Moreover, the minimization problem
Z ∗

T ,S ∈ argmin
Z∈CSx ,Sy

W2
2 (T , S(Z ))

has a unique minimizer which is given by
Z ∗

T ,S = (Tx
−1#Sx )Txy (Ty

−1#Sy )
17 / 25



Geometric mean of covariance matrices

Geometric mean of covariance matrices For S,T ∈ Sn
+,⋆, the geometric

mean of S and T is given by

S#T := S1/2
(
S1/2T −1S1/2

)−1/2
S1/2

Lemma [Bhatia, 2009] It holds that
(i) S#T is the unique matrix C ∈ Sn

+,⋆ solution to the equation
CS−1C = T ;

(ii) S#T = T#S ;
(iii) (S#T )−1 = S−1#T −1.
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Marginal-constrained modified Wasserstein barycenter

Question : Find the closest Gaussian distribution for Wasserstein distance
τ = N (µ, S) to τref = N (µref , Sref) with marginals

margx (τ) = N (µx , Sx ) and margy (τ) = N (µy ,Sy ).

Full answer :

µ =
(
µx
µy

)
, S =

(
Sx Z ∗

Sref ,S
(Z ∗

Sref ,S)T Sy

)

for some Z ∈ Rnx ×ny .

Marginal-constrained barycenters (arbitrary number of Gaussians) :
Choose τref as a Wasserstein barycenter
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Extension to Gaussian mixtures

We consider Gaussian mixtures :

∀1 ≤ m ≤ M, τm =
Km∑

km=1
α

(m)
km

N (µ(m)
km
, S(m)

km
)

with (α(m)
1 , . . . , α

(m)
Km

) ∈ ΛKm for some Km ∈ N∗.

Main steps :
▶ Write down a similar optimization problem (using mixture distance

[Delon, Desolneux, 2020])
▶ Simplify this problem by specific choice of Gaussians
▶ Numerical resolution by postprocessing the mixture Wasserstein

barycenter.

More details in [Dalery, GD, Ehrlacher, 2025]
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Toy gaussian model

fig:bary
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Fokker-Planck equation

∂ρ

∂t = −∇x ,y ·
(

A
(

x
y

)
ρ

)
+D∆x ,yψ with D > 0 and A = Ω

(
0 −1
1 0

)
.

fig:bary 23 / 25



Preliminary results for electronic structure calculations

fig:bary
24 / 25



Conclusion and perspectives
Conclusion :
▶ Definition of marginal-constrained (and marginal-preserving) modified

Wasserstein barycenters between Gaussian measures and Gaussian
mitures which can be easily computed

▶ Encouraging preliminary towards the design of new reduced-order
models results for electronic structure calculations

Perspectives :
▶ Gaussian fit of electronic one or two-body densities lead to quite large

errors !
▶ Improve on gaussian fit algorithms
▶ Extend the definition/computation of marginal-constrained modified

Wasserstein barycenters to arbitrary measures

Open postdoc position on nonlinear reduced order modelling (Jan. 2026).

Thank you for your attention.
Dalery, Dusson, Ehrlacher, 2025 : hal-04696783v2
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