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Outline

Motivation : model-order reduction for electronic structure calculations
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Context : Modeling a molecular system

Water molecule : B @

» K = 3 nuclei — quantum particles

(2 hydrogen and 1 oxygen)
» M = 10 electrons — quantum particles

Ground state : state of lowest energy of a system : energy minimization

Time-independent Schrodinger equation : (1926)
Parameters : Nuclei configuration {Ry}x=1. k-
Unknowns : W(ry,ra, ..., ry) wavefunction, E energy.

M
1 ne
<—2 E Ay, + Vm) V(ry,ro,...,rm) = EV(r,r, ..., ),

i=1
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Context : Modeling a molecular system

Water molecule : H’O\H
» K = 3 nuclei — guantum classical particles
described by
(2 hydrogen and 1 oxygen) positions and velocities
» M = 10 electrons — quantum particles described by a
wavefunction

Ground state : state of lowest energy of a system : energy minimization

Time-independent Schrodinger equation : (1926)
Parameters : Nuclei configuration {Ry}x=1. k-
Unknowns : W(ry,ra, ..., ry) wavefunction, E energy.

M

1 7

<—2 Z Ay, + Vm) V(ry,ro,...,rm) = EV(r,r, ..., ),
i=1

Computational cost :

1039 unknowns for the water molecule discretized with 10 points per

dimension.

Untractable even for small systems e



Density and pair density

R, configuration of the nuclei

Density pr(x) = [ [Walx o)
R3(N-1)

Pair density 7r(x,y) = / [WR(xX, ¥, x3, ..., xn)[?
R3(N-2)
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Aim : Approximate pair density 7 from density pr

Motivation : Energy efficiently approximated with density, and pair density

Fixed number of electrons /6 TR(X,y) dx dy = /3 pr(x) dx = 1.
R R
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Model-order reduction for the pair density

Objective : New reduced-order models
» Database 7g, R € Ryirain With one-body densities pg
» Construct approximations 7g of 7g using pgr for Re R
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Model-order reduction for the pair density

Objective : New reduced-order models
» Database 7g, R € Ryirain With one-body densities pg
» Construct approximations 7g of 7g using pgr for Re R

Link between one-body and two-body densities

/ TR(x,y) dy = pr(X), / TR(x,y) dy = pr(x)
R3 R3
Marginal constraint

Translation invariance
If ¢ € R3 is a translation vector, it must hold that

PRic = PR(-+¢€), TRyc=7R(-+¢€,-+¢), Tric=T7r(-+¢c,-+¢)
Optimal transport
Optimal transport for model order reduction :

[lollo, Lombardi, 2014] [Ehrlacher, Lombardi, Mula, Vialard, 2020] [lollo,
Taddei, 2022] [Do, Feydy, Mula,2023] [Rim, Peherstorfer, Mandli, 2023]
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Outline

A few results on optimal transport
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Wasserstein distance

Originally introduced by Monge : moving a pile of sand efficiently to cover a

sinkhole M(‘\

Wasserstein distance : for u, v € P»(Q)? as

Wau)? = inf [ (e y)? dry),

M(u, v) : set of probability measures over Q2 with marginals v and v.
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Wasserstein barycenters

» n probability measures p1,..., pn
P n positive weights A1,..., A\, summing to 1
Barycenter is a solution to the problem

inf AiWa(u, pi)*.
UG'IIQQ(QZ 2up)
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Agueh, Carlier : Barycenters in the Wasserstein Space. SIAM J. Math. Anal. (2011).

Gangbo, Swiech : Optimal maps for the multidimensional Monge—Kantorovich problem. Commun. Pure Appl. Math. (1998) /
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Optimal transport between Gaussian measures

Notation : NV (1, S)

If po =N (1o, S0) and p1 = N(u1,51), it holds that
W3 (po, p1) = |lpo — pall® + Wa(So. S1)°

where W5(Sp, 51) is the Bures-Wasserstein distance between Sg and Sy,
defined as

1/2
Wa(So, S1)2 = Tr (50 +5-2(VSsivs) )
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Wasserstein barycenters between Gaussian measures

Setting :
M e N*
)\:()\1,...,)\/\/]) ISHAVY

P = (p17 s 7/0M) S PZ(Rn)M
forallie{1,..., M}, pi = N(pi, Si)

Wasserstein barycenter :
Barf(p) = N(ps, S)

where
M
s = Z )\m,um
m=1

and 5, € 87 | is the unique symmetric positive definite matrix solution to
the following equation

VZ‘ A (rsmf)”z

In the sequel, we will denote S, by Barf)VZ(S) where § := (51,...,5um).



Hlustration
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Hlustration

@ @

11/25



Outline

Approach : from density to pair density
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Approach

» Offline phase :
1. Database : Choose values R € Ry;ain and compute

pr and 7R, R € Riain (snapshots)

2. Greedy algorithm : Select Ry, Ry, ..., Ry € Ripain With M € N*
(small) so that,

V R € Rirain, TR~ Bar%(ml, ...,TR,,) for some X € Ap.

(1)

» Online phase :
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» Online phase : For a new value R € R,
1. Compute pg (out of a one-body density model)
2. Compute Ar € Ay so that

PR ~ Bar)‘)@(pRU ..., PR,,) for some Ag € Ay.
3. Compute 7p € Ay as
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Issue related to marginal constraints
We would like that

TR R Barﬁé(ml, ...y TRy) = PR~ Bar)‘W2(pR1, .y PRy)

Not true in general !
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Issue related to marginal constraints
We would like that

TR R Barﬁé(ml, ...y TRy) = PR~ BarﬁVZ(pRl, .y PRy)

Not true in general !

Idea : Marginal-constrained modified Wasserstein barycenters

So far (and talk of today) : marginal-constrained modified Wasserstein
barycenters for

» Gaussian distributions

» Gaussian mixtures

Extension to general distributions is work in progress !

[Abraham, Abraham, Bergounioux, Carlier, 2017] Marginal constraint
enforced using penalization

14/25



Outline

Marginal-constrained Wasserstein barycenters between Gaussian mixtures
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Marginals of Gaussian measures
Setting : n = n, + n, for some ny, n, € N*.
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Marginals of Gaussian measures
Setting : n = n, + n, for some ny, n, € N*.

If 7 =N(x,S)
Hx Sx Sy
= ) S= )
() (33

marg, (7) = M(px, Sx)  and marg, (1) = Ny, Sy)

Question : Find the closest Gaussian distribution 7 = N(1, S) to Tyer =
N (pires, T) with marginals

marg, (1) = M(ux,Sx) and  marg (1) = NM(uy,Sy),

that is
inf Wa(7ref, 7')2

16 /25



Marginals of Gaussian measures
Setting : n = n, + n, for some ny, n, € N*.

If 7 =N(x,S)
Hx Sx Sy
= ) S= )
() (33

marg, (7) = M(px, Sx)  and marg, (1) = Ny, Sy)
Question : Find the closest Gaussian distribution 7 = N(1, S) to Tyer =
N (pires, T) with marginals

marg, (1) = M(ux,Sx) and  marg (1) = NM(uy,Sy),

that is
inf Wa(7ref, 7')2

Partial answer : Necessarily,

Hx Sx
W= , S=
<“y> ( ZT 5

for some Z € R™ X"y,

N
~
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Main result

Theorem [Dalery, GD, Ehrlacher, 2025]
Let ny,n, € N*and let T € Sﬂfjny with block decomposition

T. T,
T — X Xy

Denote for Z € Cs, s, := {Z e Ry |52 75,12, < 1}

. A
S5(Z) = Z1 s,

The function F defined as
F:Cs.s,>Z— Wh(T,S(2))?

is strictly convex. Moreover, the minimization problem
7% s € argmin W2(T,S(2))

ZECSXASY
has a unique minimizer which is given by

Z7 s = (T #S) T (T T'#S))

17/25



Geometric mean of covariance matrices

Geometric mean of covariance matrices For S, T € S ,, the geometric
mean of S and T is given by

S4T = SU2 (51/2 7——151/2)*1/2 51/2

Lemma [Bhatia, 2009] It holds that

(i) S#T is the unique matrix C € S , solution to the equation
csic=r;

(i) SHT = T#S;
(i) (S#T) t=S"14T71
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Marginal-constrained modified Wasserstein barycenter

Question : Find the closest Gaussian distribution for Wasserstein distance
7 =N, S) to Tvet = N (firef, Srer) With marginals

marg, (1) = N(ux, Sx) and  marg,(7) = M(py, Sy).
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Marginal-constrained modified Wasserstein barycenter

Question : Find the closest Gaussian distribution for Wasserstein distance
7 =N, S) to Tvet = N (firef, Srer) With marginals

marg, (1) = N(ux, Sx) and  marg,(7) = M(py, Sy).

Hx S« Z; S
= , 5 — N ref
! (My> ( (Zsmf,s)T Sy )

for some Z € R™X"Ny,

Full answer :

Marginal-constrained barycenters (arbitrary number of Gaussians) :
Choose Tyt as a Wasserstein barycenter
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Extension to Gaussian mixtures
We consider Gaussian mixtures :

Km
A m M = 3 oD )
km=1
with (a:(Lm)7 ceey a%)) € Nk, for some K, € N*.
Main steps :

» Write down a similar optimization problem (using mixture distance
[Delon, Desolneux, 2020])

» Simplify this problem by specific choice of Gaussians

» Numerical resolution by postprocessing the mixture Wasserstein
barycenter.

More details in [Dalery, GD, Ehrlacher, 2025]
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Outline

Numerical results
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Toy gaussian model

N

/

Error=0.0

D

Error=1.15

Error=1.44

Error=1.15

Error=0.0

/

Error=0.0

N

Error=0.17

Error=0.47

Error=0.8

Error=0.0

/
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Fokker-Planck equation

Zf — —vxvy(A ( ; ) p>+DAX7y1/J with D >0 and A= Q ( (1’
Error=0.0 Error=0.15 Error=0.17 Error=0.11 Error=0.0
Error=0.0 Error=0.06 Error=0.08 Error=0.06 Error=0.0

s
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Preliminary results for electronic structure calculations

®®

D

&

Error=0.52 Error=0.52 Error=0.51 Error=0.5 Error=0.53
, Z
=0. rror=0. rror=0. rror= . rro
G, | G 0
P |® | ©
Error=0.0 Error=0.09 Error=0.1 Error=0.09 Error=0.0
, L Gy | | D
» P v | €
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Conclusion and perspectives

Conclusion :

» Definition of marginal-constrained (and marginal-preserving) modified
Wasserstein barycenters between Gaussian measures and Gaussian
mitures which can be easily computed

» Encouraging preliminary towards the design of new reduced-order
models results for electronic structure calculations

Perspectives :

» Gaussian fit of electronic one or two-body densities lead to quite large
errors !
» Improve on gaussian fit algorithms
» Extend the definition/computation of marginal-constrained modified
Wasserstein barycenters to arbitrary measures
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Thank you for your attention.
Dalery, Dusson, Ehrlacher, 2025 : hal-04696783v2
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