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Happy Birthday Albert! Gourmet Dining ...
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Autoencoders Introduction

Deep Neural Networks (DNN) Autoencoders

Analyze a compact set K in a metric space X by transforming its elements to a
low dimensional space Y and keeping the essential information about them.

I encoder E : X → Y and decoder D : Y → X

I for any element x ∈ K we want distX
(
x,D(E(x))

)
to be small

I given a measure µ on K consider
∫
K

distX
(
x,D(E(x))

)
dµ

I other measures of closeness supx∈K distX
(
x,D(E(x))

)
or if X is a normed space,

∫
K
‖x−D(E(x))‖2Xdµ

Autoencoders are DNNs that have an encoder part E and a decoder part D.

I X can be an infinite dimensional or a very high dimensional space
I consider a discretization of X to RN  use X for it, e.g. X = `2(RN )

I usually Y = `2(Rd) with N >> d but we can consider other norms/metrics

I typical loss function L(E,D) =
∑K
j=1 ‖xj −D(E(xj))‖2X



Autoencoders Setup

Autoencoders Setup

I the objective is to consider K ⊂ X via random sampling of its elements and
attempt to describe it in terms of the elements of a latent space Y

I the autoencoder A(x) := D(E(x)) and aiming at x ≈ A(x)

I the encoder E : X → Y depends on several parameters E : E(x) = E(E ;x)
it is composed of several layers E(x) = E`E (...(E2(E1(x)))...):

x[1] = E1(E1;x), x[2] = E2(E2;x[1]), ... , y = x[`E ] = E`E (E`E ;x[`E−1])

with parameter set E = ∪`Ej=1Ej
I the decoder D : Y → X depends on the parameters D: D(y) = D(D; y)

it is composed of several layers D(y) = D`D (...(D2(D1(y)))...):

y[1] = D1(D1; y), y[2] = D2(D2; y[1]), ... , x̃ = y[`D] = D`D (D`D ; y[`D−1])

with parameter set D = ∪`Dj=1Dj



Autoencoders Setup

Autoencoders Setup

I for x ∈ K set y = E(x) and x̃ = D(y) = A(x); data points xj ∈ K, j ∈ J

I the loss function can be L(E,D) =
1

#J

∑
j∈J
‖xj −A(xj)‖2X

or L(E,D) =
1

#J

∑
j∈J
‖xj −A(xj)‖2X +

1

#J

∑
j∈J
‖E(xj)‖2Y

I the setup can use a distance instead of a norm and any `p averaging,
1 ≤ p ≤ ∞, instead of the averaged `2-norms

I the main issue is to define the sets E and D over which the search for
(the parameter sets E and D of) E ∈ E and D ∈ D is performed

I note that the performance of the autoencoder depends on

inf
D∈D

sup
x∈K

inf
y∈Y
‖x−D(y)‖X



Reduced Basis Introduction

Reduced Basis

Find a basis of a low-dimensional linear space that approximates well a compact
set K of interest – often the set of solutions of a parametric PDE

[Maday, Y., Patera, A.T., Turinici, G.: A priori convergence theory for
reduced-basis approximations of single-parametric elliptic partial differential
equations. J. Sci. Comput. 17, 437–446 (2002)]

Use a greedy algorithm to find such a basis:

I [Buffa, A., Maday, Y., Patera, A.T., Prud’homme, C., Turinici, G.: A Priori
convergence of the greedy algorithm for the parameterized reduced basis.
Modél. Math. Anal. Numér. 46, 595–603 (2012)]

I [Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk,
P.: Convergence rates for greedy algorithms in reduced bases Methods.
SIAM J. Math. Anal. 43, 1457–1472 (2011)]

I [DeVore, R., Petrova, G., Wojtaszczyk, P.: Greedy algorithms for reduced
bases in Banach spaces, Constructive Approximation 37, 455–466 (2013)]



Reduced Basis Random Greedy Selection

Building of a Reduced Basis by a Random Greedy Selection

I xj – independent and identically distributed (iid) random drawings from K

I choose u1 := xm for m = argmaxj∈J‖xj‖X

I choose uk+1 := xm for m = argmaxj∈J minu∈span{u1,...uk} ‖xj − u‖X

I it is convenient to orthonormalize the basis u1, u2, ..., un

I to use the theorems about the greedy selection of the reduced basis we need
that for Uk := span{u1, ...uk}

min
u∈Uk

‖uk+1 − u‖X ≥ γ sup
x∈K′

min
u∈Uk

‖x− u‖X

for some fixed γ ∈ (0, 1] with high probability on x ∈ K

meaning that the set K ′ ⊂ K has measure µ(K ′) ≥ 1− δ for some very
small δ > 0, where µ is the probability measure of K



Reduced Basis Random Greedy Selection

Reduced Basis Greedy Selection using Random Training Sets

[Cohen, A., Dahmen, W., DeVore, R., Nichols, J.: Reduced Basis Greedy
Selection Using Random Training Sets, ESAIM: M2AN 54, 1509–1524 (2020)]

I fine discretization by a random training set of size polynomial in ε−1

to obtain a final approximation error ε with high probability

I Σm – union of polynomial spaces with downward closed bases of size m

I K ⊂ X is a compact set of mappings v → x(v) for parameter sets v ∈ V
I approximation class Ar := {x ∈ X : inf

P∈Σm

sup
v∈V
‖x(v)− P (v)‖X < Cm−r}

Theorem. Let K ⊂ Ar for r > 2 and C ≤M0 in the definition be bounded.
Then with probability greater than 1− η the weak greedy algorithm produces a
reduced basis space Un such that dist(K,Un) ≤ ε and if for some s > 0 the
Kolmogorov width dn(K) behaves as n−s, then n = n(ε) ≤ C0e

−( 1
s + 3

s(r−2)
) and

the error bound evaluations are N(ε) ≤ C0e
− 2s+r+1

s(r−2) (| log ε|+ | log η|).



Reduced Basis Probability Estimates

Probability Inequalities

We assume minimal requirements about the set K and the random selection
{xj}j∈J that include the assumption that can estimate well the first three
moments EZ, EZ2, and EZ3 of random variables Z under consideration

Z is the random variable representing the approximation error on the k-th step of
the greedy algorithm. We estimate it by the random sampling {xj}j∈J from K.
The estimation zk should be bounded by zk ≥ γMk with γ > 0 large enough,
where Mk is the actual maximum of such an error over all elements of K

I Chebyshev inequality: Prob
(
Z −EZ ≥ α

(
EZ2 − [EZ]2

))
≤ 1

α2

I set α = M
EZ2−[EZ]2 , where M is the predicted maximal value of Z on K, so

we have to increase M and by this decrease γ to make δ = 1
α2 very small

I the above estimate does not depend on the number of drawings #J we have

I we need inverted Chebyshev inequality to have such an estimate



Reduced Basis Probability Estimates

Estimate of the Maximum of the Errors

I consider the realizations zj of Z representing the errors at the k-th step of
the greedy algorithm

I Prob(maxj∈J zj < γMk) =
(
Prob(zj < γMk)

)#J

=
(

1−Prob(zj ≥ γMk)
)#J

I [Rohatgi, V.K., Szekely, G.J.: An Inverse Markov-Chebyshev Inequality,
Periodica Polytechnica Ser. Civil Eng. 36, 455–458 (1992)]

I estimates of Prob(Z > a) from below using the first three moments of Z
for example, Prob(Z > a) ≥ −2EZ

a + 11
4

EZ2

a2 −
3
4
EZ3

a3

I work in progress with Edsel Pena, Henry Simmons, and Josh Moorehead
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Happy Birthday Albert!

Best wishes and good luck!
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