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Solving PDEs without Boundary Conditions - Motivation

Why missing boundary information?

Correct physics unknown
Values not accessible

Modified by numerical schemes

Airfoil simulation

no slip

inflow L

no slip
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Optimal Recovery
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Recovery Problem - Mathematical Setting

Core Problem:

We are given data observation of an unknown function f 0 — R with Q C R

We want to use this information to create f that predicts f away from the data.
Measure of success:

f € X and we measure the success in some function norm ||.||x

eg X =

is the recovery error.

Data:

Measurements w; := l;(f), i = 1,...,m, where I; € X# with ||li| x4 = 1, e.g.

Model Class Assumption:
Additional information about f is needed;
f€ K CX, K is a compact subset of X, e.g., :
K is called the or
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Benchmark - Optimal Recovery *°

Information: Ky :={f € K : l;(f) =w;, j=1,...,m}.
Encodes all the information about f
Chebyshev Ball: Let B = B(zw, Rw) be a smallest ball in X that contains K.
Optimal Recovery: f: zw is a Chebyshev center.
Optimal Recovery Error: R, := R(Ky)x is the Chebyshev radius.

Near Optimal Recovery Error: We would be satisfied with f such that

with a reasonable and known C' > 1.

C =1 when f: is a Chebychev center.
C < 2 when f is any element in K,,.

3 [MICCHELLI AND RIVLIN (1977)],[NOVAK AND WOZNIAKOWSKI (2008)],[TRAUB AND WOZNIAKOWSKI (1980)],[BINEV, B., DEVORE, PETROVA (2024)]
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Elliptic PDE
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——
Model Problem

Domain: €2 bounded with Lipschitz boundary I
PDE:
neX:=H(Q) : ~AT=0 inQ, onT.

Model Class - Boundary Regularity: u|r € HY/?(T') <= @ € H'(2). We assume that &
satisfies for some s > %

ar € UHY(D)), e,  |ullgem <1
K:={veH'(Q) : Av=0, ||[v|lgsr) <1} cC H'(Q).
Unit Ball Property:
H ={ve H(Q) : Av=0, wv|r € H)}cC H'(Q).

is a with [[v]l3 = [|v]] e (r).-

Measurements:

Li(@) =w; €R, i=1,..,m given, with I; € U(H"(Q)%).
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Taking advantage of the Hilbertian Setting

Riesz Representers of Measurements: [; € H'(Q)# C (H*)*
wi € H® (i, v) =y = li(v), Vv e HE.
Information: W := span(p1, ..., om), the information l;(v) = w; <= the information Pwv = vw .
Ko ={UH*) : L(w)=w; i=1,..,m}=UM)N{Pwi+w", w" W'}

Chebychev Radius: [MiccHELLI AND RIVLIN (1977)],

w P+ wt

zw = Pwu = Z;’l:l ZjPjs

W= (W01, ...,wm)”, Gij == (pi, 05 m(r) = lLi())e

z := (21, ...,zm)T
Gz = w (Moore-Penrose)
K = U(H?)
Unit Ball Property: where H* is a with [[v]|3s = ||v]| gs (ry-
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Numerical Algorithm

Given € > 0
Step 1: For j = 1,...,m, compute an approximation @; € H'(Q) of ¢, such that

les — @illai) <e.
Recall that ¢; € H* is defined by
(@, v) =y = li(v), Vv € HE.
Step 2: Define G = (1:(#5))i"=1 and find a coefficient a such that
Ga=w.

We compute the Moore-Penrose inverse with thresholding.

Step 3: Assemble the recovery function

m
=Y ;3.
j=1
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Optimal Recovery Error

Theorem [Binev, B., CoHEN, DAHMEN, DEVORE, PETROVA (2024)]

For any € > 0, the approximate recovery function
m
i=> ;3
j=1
satisfies for all u € K., (and in particular u)

lw — @l g1 () £ R(Kw) (o) + Ce,

for a constant C' mainly depending on the condition number of G~ and m (explicit formula).
Equivalently
lw =l 1) < Cle)R(Kw) (e,

with C(e) = 1" ase — 07,
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Key Ingredient: PDE for the Riesz Representers ¢ := ¢;

Continuous Problem:

peH : (@, v)msry = 1(v), Yo € H°.
Trace Formulation: ¢ € H® = ¢ = E1) is the harmonic extension of v € H*(T").
Fractional Diffusion Problem: Find ¢ € H*(T") such that

(Yymymsry = U(En) = L(n),  Vne HT).

Equivalent Formulation:
Find ¢» € H*(T'), the weak solution of

o]

([ — Ar)sw =/le H_S(F), where (I — Ar)g’lﬁ(l‘) = Z)\;(w, bi)Lz(p)bi(l‘).

i=1

Resolvant Formula (0 < s < 1):

1 _ _
= (2] — (I — Arp)) " dz,
¥ / (21 — (I - Ar)) "¢ dz

211

where C C C\ (—o0, 0] x {0} is an oriented curve with the eigenvalues of (I — Ar) to its right.



-
Key Ingredient: PDE for the Riesz Representers ¢ := ¢;

Continuous Problem:

pEeH : (@, V) sy = U(v), Yo € H®.
Trace Formulation: ¢ € H® = ¢ = E1) is the harmonic extension of ¢ € H*(T").
Fractional Diffusion Problem: Find ¢y € H°(T") such that

(Y, musry =U(En) = L(n),  Vne H(T).
Equivalent Formulation:
Find ¢» € H*(T"), the weak solution of

oo

(I — Ar)sd) =/ S Hﬁs(l—‘), where (I - AF)S1/J($) = Z)\,S(’L/J, bi)LQ(p)bi(m).

1=1
Balakrishnan Representation (0 < s < 1):
w= I [Ty ea= D [T ey - an) e ay

™ 0 ™ e

For s > 1, iterate (I — Ar)®* = (I — Ap)* '(I — Ar) for1 < s <2, ...



Finite Element on Surfaces for Fractional Diffusion Problems

Subdivision: 7j, of 2 assumed to be Lipschitz

Finite Element Spaces: Vj := V(7}3) space of continuous pw linear functions, T, = V|1 space of
continuous pw linear functions (on T').

Discrete Harmonic Extension: Ej, : Tj, — V}, is defined for w, € T}, by

/ VE,wy - Vo, =0, Yo, € Vi N Hé (Q), Ehwh‘r = Wh.
Q
RHS approximation: ¢y (vy,) := l(Exvp).

Galerkin: v, € Ty, is given by
sin(ms & s
Yn = : )j/ 1™ (y) dy,

™ —o0

where wy, (y) € Ty, approximates (e¥I + (I — Ar)) ¢ and is given by
(1 + ey) / wh,(y)vh +/ voh(y) - V9o = Eh(vh), Yon, € Tp.
r r

Sinc Quadrature: Given N, set k ~ [1/v/N] and y; = jk, j = =N, ..., N,

. N
sin(7ms 8y,
o o= T S ), o s B

j=—N
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Error Estimates - Riesz Representers®

PDE Regularity Property®: Let t* > 0 be the largest number so that for 0 < ¢ < ¢* we have
(I—Apr)™ ' H ') = H'TYD)
is an isomorphism and
E:H2T (D) - H'(Q)
is bounded.

Approximate Riesz Representers: We have that ¢ = Ev and ¢} := E1i satisfy

77r2\/ﬁ)

N
e —wnllar@ S (h° +e 0] £ )% »

where 3 := min(2s — 1,t* + %, 2t*)7 > 0 is “optimal” for FEM on quasi-uniform subdivisions.

3[GRISVARD (2011)] and [Burra, COSTABEL, SCHWAB (2002)]

b[B., GuieNARD AND LEE (2024)] based on [B. AND LEE (2022)] and [B. AND PascIak (2015)]
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Error Estimates - Optimal Recovery

Set uf = >t Ujgo?fh where U = (U1, ..., Uy,) satisfies GU = w, and G;; = Li(¢}s). There exists
C' (depending on €, s, and r) such that

. a2
sup ”u - ufz\[”Hl(Q) < R(K’w)Hl(Q) + C(hB +e \/ﬁ),

w€ Koy
4l approximate the Chebysev center
Near optimal Recovery [B. aND GUIGNARD (2024)]

sup |lu — ﬂ;;]HHl(Q) < C(h, N)R(Kw) g1 (o)

we Ky

provided (depending on the measurements) and where
C(h,N) =17 as h — 0" and N — oo.
Apply approximation estimate from [BINEV, B., COHEN, DAHMEN, DEVORE, PETROVA (2024)].

In particular for the targeted solution to the PDE u

1= 2@ < e N)R(Ew) s )
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What about pointwise measurements??

Defined on the Model Class: I(v) = v(Z), T € Q, is a linear functional on H* provided H* C C°(Q),
ie.,
s> (d—1)/2 =
The algorithm requires:
lle — @nll () + <e.
Finite Element Error when d =2 and s = 1:

~ min(% *
llp = Bnllzoe (@) S 22D

and 0 < t* <1 (elliptic regularity on I" and continuity of extension operator)

2[BNEV, B., COHEN, DAHMEN, DEVORE, PETROVA (2024)]
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Pointwise measurement located inside 2°

Advantage: We avoid the requirement H* C C°(Q) since the functions in H°® are harmonic inside €.

Finite Element Error when d = 2 and s = 1:

HSO _ @hHLOO(Q) < htl\in(%,t*)+mi1)(%,t*)

where 0 < t* <1 (elliptic regularity on I" and continuity of extension operator).

Tools: Local pointwise estimates based on the distance to the boundary.

Drawback: The constant in the error estimate blows up as d(z,I") — 0.

2[B., DEMLOW, SIKTAR (SOON)]
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Stokes
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N
Setting

System of Equations: The velocity u: Q — R? and the pressure p : Q — R are related via the system
of equations
—Au+Vp=0 and divu=0 in Q.

Ambient space:
1 d 2 2 2
X = H (2)" x L2(), [v,qllx == HVHHl(Q)d + HpHLQ(SZ)-

Model class:
K = {(v,p) € HY(Q)? x La(Q) ¢ [[ullgorya <1, }

Measurements: [;(u,p) in general, for the numerical illustration we consider measurements on u; or p
separately.
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Optimal Recovery for Stokes®

Chebyshev Radius: Depends on the approximation of the couple velocity-pressure in an intricate way.

sup |lu—1u,p—Dpllx = R(Ku.)x, (u,p) Chebyshev center.
(u,p)EKw

Optimal recovery algorithm: Same as for the Poisson problem but with the harmonic extension
replaced by the“Stokes” extension.

Quantity of interest: We consider the drag on v C I' with normal v
Q(v,q) = / el (Vv + Vvl — q[) v.
ad

Following ?, its value Q(1,p) at Chebyschev center is its optimal recovery

sup  [Q(U,p) — Q(u,p)| = inf  sup [a— Q(u,p)]
(u,p) €K @ER (u,p)eK,

3[FoucART AND HENGARTNER (2025)]

b[B. aND GuiaNaARD (IN PROGRESS)]
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Comments on the mean value condition - in progress

Model class: Consists of pressures with fﬂ p=20

General pressure: The targeted pressure may not have vanishing mean value
—> the measurements may not correspond to a pressure with vanishing mean value;

Optimal Recovery: Depend on the pressure recovery (average) in an even more intricate way.

Questions:

Is it possible to construct a practical algorithm to recover the mean value of the targeted pressure
from the measurements? Ok when [;(u,p) = l;(p) = p(z:)°.

Is it possible to incorporate [, p = C' (unknown C') directly in the recovery algorithm?

3[FOUCART, HIELSBERG, MULLENDORE, AND PETROVA (2019)]
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Setup |

Domain: Square domain Q = (0, 1)?;

Functions to Recover:

U= (—e‘esjrfg);)(lﬁ 2:52) » pl,y) =202y - 1), s=1

Measurements:

L(v) = \/#/Qexp (-%)ux)dx

with 7 = 0.1 and uniformly distributed z; € Q, 7 =1,2,...,m.

Discretization Parameters: h sufficiently small.
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Preliminary results - Square domain
U1 ] p

(Muy s Mg, p) = (0,0,36),  [[u—1tfg102 =3.1281,  |p— pllr,(0) = 0.0848.

Exact

Recovery
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Preliminary results - Square domain
U1 ] p

(Muy s My, p) = (36,0,0), [la = g1 ()2 = 1.5936, lp — Pllo) = 0.8731.

Exact

Recovery
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Preliminary results - Square domain
U1 ] p

(mul , muQ,p) = (36, 36, 0), ||Ll - ﬁ||H1(Q)2 = 02865, ||p - ﬁ||L2(Q) = 0.2381.

Exact

Recovery
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Preliminary results - Square domain
U1 ] p

(Muy s My, p) = (36,36,36),  |u— g1 = 02851,  [[p—pllr, () = 0.2337.

Exact

Recovery
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Preliminary results - Square domain

Velocity recovery error [[u — || ;1 (0)2:

- ks 0 1 4 9 16 25 36 49 64
0 — [ 3274 | 3.166 | 3.138 | 3.132 | 3.128 | 3.128 | 3.129 | 3.129
1 3.181 | 3.181 | 2.814 | 2.780 | 2.777 | 2.773 | 2.774 | 2.774 | 2.775
4 1.773 | 1.766 | 1.621 | 1.025 | 0.821 | 0.729 | 0.729 | 0.735 | 0.737
9 1.050 | 1.038 | 0.943 | 0.894 | 0.708 | 0.513 | 0.420 | 0.386 | 0.385
16 0.632 | 0.629 | 0.617 | 0.552 | 0.496 | 0.476 | 0.325 | 0.271 | 0.272
25 0.412 | 0.410 | 0.398 | 0.406 | 0.402 | 0.338 | 0.308 | 0.248 | 0.228
36 0.287 | 0.286 | 0.287 | 0.283 | 0.278 | 0.299 | 0.285 | 0.228 | 0.218
49 0.238 | 0.237 | 0.237 | 0.237 | 0.244 | 0.261 | 0.233 | 0.227 | 0.214
64 0.203 | 0.202 | 0.197 | 0.189 | 0.206 | 0.181 | 0.220 | 0.216 | 0.209
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Preliminary results - Square domain

Pressure recovery error ||p — Pl 1, (q):

Mg 1 4 9 16 25 36 49 64
My
0 — [ 1.155 | 0.623 | 0.287 | 0.277 | 0.128 | 0.085 | 0.050 | 0.046
1 2.485 | 2.485 | 0.662 | 0.308 | 0.279 | 0.129 | 0.085 | 0.050 | 0.046
4 1425 | 1.422 | 1.229 | 0.799 | 0.497 | 0.242 | 0.143 | 0.083 | 0.072
9 0.925 | 0.901 | 0.703 | 0.658 | 0.494 | 0.346 | 0.207 | 0.118 | 0.100
16 0.507 | 0.499 | 0.485 | 0.388 | 0.398 | 0.365 | 0.243 | 0.164 | 0.134
25 0.336 | 0.332 | 0.319 | 0.327 | 0.312 | 0.277 | 0.250 | 0.178 | 0.152
36 0.238 | 0.237 | 0.238 | 0.235 | 0.233 | 0.247 | 0.234 | 0.173 | 0.167
49 0.196 | 0.195 | 0.194 | 0.196 | 0.199 | 0.215 | 0.194 | 0.187 | 0.169
64 0.165 | 0.163 | 0.165 | 0.148 | 0.156 | 0.151 | 0.186 | 0.182 | 0.169
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Preliminary results - Square domain

1/
Total recovery error (Hu — ﬁ||i11(9)2 + |lp — ﬁH%z(Q)) :

M 0 1 4 9 16 25 36 49 64
My
0 - 3.472 | 3.227 | 3.151 | 3.145 | 3.131 | 3.129 | 3.129 | 3.129
1 4.037 | 4.037 | 2.890 | 2.797 | 2.791 | 2.776 | 2.775 | 2.775 | 2.775
4 2.275 | 2.267 | 2.035 | 1.299 | 0.960 | 0.768 | 0.743 | 0.740 | 0.740
9 1.400 | 1.375 | 1.176 | 1.110 | 0.863 | 0.619 | 0.468 | 0.404 | 0.398
16 0.811 | 0.803 | 0.784 | 0.675 | 0.636 | 0.600 | 0.406 | 0.317 | 0.303
25 0.531 | 0.528 | 0.510 | 0.521 | 0.509 | 0.437 | 0.397 | 0.306 | 0.274
36 0.373 | 0.372 | 0.372 | 0.367 | 0.363 | 0.388 | 0.369 | 0.286 | 0.274
49 0.308 | 0.307 | 0.306 | 0.307 | 0.315 | 0.338 | 0.303 | 0.294 | 0.273
64 0.262 | 0.260 | 0.257 | 0.240 | 0.258 | 0.236 | 0.288 | 0.283 | 0.268
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Setup Il - Airfoil - Preliminary results

velocity (streamlines) pressure (isocontours)

Reference solution boundary conditions:
u = 0 on the airfoil, (Vu” + Vu — pI)n = 0 on the outflow, u = (1,0)7 elsewhere

Missing information:
unknown BC on the airfoil and the outflow
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Setup Il - Airfoil - Preliminary results

Velocity recovery error |[u — 1| g1 (q)2:

(0,0) - 1.0832 | 0.6862 | 0.1147
(1,1) 3.5855 | 0.2781 | 0.6488 | 0.0562
(4.4) 0.0906 | 0.0919 | 0.0793 | 0.0119
(9,9) 0.0140 | 0.0139 | 0.0127 | 0.0068

ik 0 1 4 9

(0,0 - 21291 | 1.24339 | 0.0830
(1,1) | 8.0994 | 0.5325 | 1.1970 | 0.0556
(44) | 01608 | 0.1611 | 0.1389 | 0.0157
(9.9) | 0.0168 | 0.0166 | 0.0149 | 0.0082

OR for PDE - The Boundary Conditions Escape Plan Andrea Bonito




Setup Il - Airfoil - Preliminary results

Drag coefficient recovery error (exact = 12.553):

(0,0) - 33142 | 2.0591 | 0.1117
(1,1) 12,567 | 0.7148 | 1.9366 | 0.0540
(4,4) 0.2203 | 0.2080 | 0.1937 | 0.0101
(9,9) 0.0155 | 0.0149 | 0.0124 | 0.0038
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Conclusions

Missing information: Alleviated by measurements;

Hilbertian and Unit Ball Setting: Minimal norm property;

Key step: Approximation of the Reisz representers satisfying fractional diffusion problems;
Practical Near Optimal Algorithm: Approximation of the Chebyshev center;

Not discussed: Implementation via saddle point, effect of thresholding in Moore-Penrose, effect of s.
Open question: Optimal measurements.
References:

[BINEV, B., COHEN, DAHMEN, DEVORE, PETROVA (ORIGINAL ALGORITHM)];

[B. AND GUIGNARD (PRACTICAL ALGORITHM FOR FRACTIONAL s AND STOKES)];

[B., DEMLOW, AND SIKTAR (INTERIOR MEASUREMENTS)].

Acknowledgments: NSF Grants DMS 2110811 - DMS 2409807 and deal.ii.
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