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Solving PDEs without Boundary Conditions - Motivation

Why missing boundary information?

Correct physics unknown

Values not accessible

Modified by numerical schemes

Airfoil simulation

inflow outflow ?

no slip

no slip

interface ?
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Recovery Problem - Mathematical Setting

Core Problem:

We are given data observation of an unknown function f̃ : Ω → R with Ω ⊂ Rd.
We want to use this information to create f̂ that predicts f̃ away from the data.

Measure of success:

f̃ ∈ X and we measure the success in some function norm ∥.∥X
e.g. X = H1(Ω).

∥f̂ − f̃∥X is the recovery error.

Data:

Measurements wi := li(f̃), i = 1, ...,m, where li ∈ X# with ∥li∥X# = 1, e.g.

l : f 7→ c

∫
Ω

f(p)e−
1
2
|p|2dp ∈ H1(Ω)#.

Model Class Assumption:

Additional information about f is needed;
f̃ ∈ K ⊂ X, K is a compact subset of X, e.g., K = U(Ht(Ω)), t > 1;
K is called the model class or prior.

OR for PDE - The Boundary Conditions Escape Plan Andrea Bonito



Benchmark - Optimal Recovery a

Information: Kw := {f ∈ K : lj(f) = wj , j = 1, ...,m}.

Encodes all the information about f̃ .

Chebyshev Ball: Let B = B(zw, Rw) be a smallest ball in X that contains Kw.

Optimal Recovery: f̂ = zw is a Chebyshev center.

Optimal Recovery Error: Rw := R(Kw)X is the Chebyshev radius.

Near Optimal Recovery Error: We would be satisfied with f̂ such that

∥f̂ − f∥X ≤ CR(Kw)X , f ∈ Kw,

with a reasonable and known C ≥ 1.

C = 1 when f̂ is a Chebychev center.
C ≤ 2 when f̂ is any element in Kw.

zw

Rw

Kw

a [Micchelli and Rivlin (1977)],[Novak and Wozniakowski (2008)],[Traub and Wozniakowski (1980)],[Binev, B., DeVore, Petrova (2024)]
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Model Problem

Domain: Ω bounded with Lipschitz boundary Γ.

PDE:
ũ ∈ X := H1(Ω) : −∆ũ = 0 in Ω, ũ|Γ = ? on Γ.

Model Class - Boundary Regularity: ũ|Γ ∈ H1/2(Γ) ⇐⇒ ũ ∈ H1(Ω). We assume that ũ
satisfies for some s > 1

2

ũ|Γ ∈ U(Hs(Γ)), i.e., ∥ũ∥Hs(Γ) ≤ 1.

K := {v ∈ H1(Ω) : ∆v = 0, ∥v∥Hs(Γ) ≤ 1} ⊂⊂ H1(Ω).

Unit Ball Property:

Hs := {v ∈ H1(Ω) : ∆v = 0, v|Γ ∈ Hs(Γ)} ⊂ H1(Ω).

is a Hilbert space with ∥v∥Hs = ∥v∥Hs(Γ).

K = U(Hs)

Measurements:

li(ũ) = wi ∈ R, i = 1, ...,m given, with li ∈ U(H1(Ω)#).
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Taking advantage of the Hilbertian Setting

Riesz Representers of Measurements: li ∈ H1(Ω)# ⊂ (Hs)#

φi ∈ Hs : ⟨φi, v⟩Hs(Γ) = li(v), ∀v ∈ Hs.

Information: W := span(φ1, ..., φm), the information li(v) = wi ⇐⇒ the information PW v = vW .

Kw = {U(Hs) : li(v) = wi, i = 1, ...,m} = U(Hs) ∩ {PW ũ+ w⊥, w⊥ ∈W⊥}

Chebychev Radius: [Micchelli and Rivlin (1977)],

zw = argminv∈Kw ∥v∥Hs

zw = PW ũ =
∑m

j=1 zjφj ,

w := (w1, ..., wm)T , Gij := ⟨φi, φj⟩Hs(Γ) = li(φj),

z := (z1, ..., zm)T

Gz = w (Moore-Penrose)

PW ũ

K = U(Hs)

Kw

0

PW ũ + W⊥W

Unit Ball Property: K = U(Hs) where Hs is a Hilbert space with ∥v∥Hs = ∥v∥Hs(Γ).
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Numerical Algorithm

Given ϵ > 0

Step 1: For j = 1, ...,m, compute an approximation φ̂j ∈ H1(Ω) of φj such that

∥φj − φ̂j∥H1(Ω) ≤ ε.

Recall that φj ∈ Hs is defined by

⟨φj , v⟩Hs(Γ) = lj(v), ∀v ∈ Hs.

Step 2: Define Ĝ = (li(φ̂j))
m
i,j=1 and find a coefficient α such that

Ĝα = w.

We compute the Moore-Penrose inverse with thresholding.

Step 3: Assemble the recovery function

û =
m∑

j=1

αjφ̂j .
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Optimal Recovery Error

Theorem [Binev, B., Cohen, Dahmen, DeVore, Petrova (2024)]

For any ε > 0, the approximate recovery function

û =
m∑

j=1

αjφ̂j

satisfies for all u ∈ Kw (and in particular ũ)

∥u− û∥H1(Ω) ≤ R(Kw)H1(Ω) + Cε,

for a constant C mainly depending on the condition number of G−1 and m (explicit formula).
Equivalently

∥u− û∥H1(Ω) ≤ C(ε)R(Kw)H1(Ω),

with C(ε) → 1+ as ε→ 0+.

Near Optimal Recovery
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Key Ingredient: PDE for the Riesz Representers φ := φi

Continuous Problem:
φ ∈ Hs : ⟨φ, v⟩Hs(Γ) = l(v), ∀v ∈ Hs.

Trace Formulation: φ ∈ Hs =⇒ φ = Eψ is the harmonic extension of ψ ∈ Hs(Γ).

Fractional Diffusion Problem: Find ψ ∈ Hs(Γ) such that

⟨ψ, η⟩Hs(Γ) = l(Eη) =: ℓ(η), ∀η ∈ Hs(Γ).

Equivalent Formulation: We choose ∥(I −∆Γ)
s/2.∥L2(Γ) as norm on Hs(Γ), s < s∗.

Find ψ ∈ Hs(Γ), the weak solution of

(I −∆Γ)
sψ = ℓ ∈ H−s(Γ), where (I −∆Γ)

sψ(x) :=
∞∑
i=1

λs
i (ψ, bi)L2(Γ)bi(x).

Resolvant Formula (0 < s < 1):

ψ =
1

2πi

∫
C
z−s(zI − (I −∆Γ))

−1ℓ dz,

where C ⊂ C \ (−∞, 0]× {0} is an oriented curve with the eigenvalues of (I −∆Γ) to its right.
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Key Ingredient: PDE for the Riesz Representers φ := φi

Continuous Problem:
φ ∈ Hs : ⟨φ, v⟩Hs(Γ) = l(v), ∀v ∈ Hs.

Trace Formulation: φ ∈ Hs =⇒ φ = Eψ is the harmonic extension of ψ ∈ Hs(Γ).

Fractional Diffusion Problem: Find ψ ∈ Hs(Γ) such that

⟨ψ, η⟩Hs(Γ) = l(Eη) =: ℓ(η), ∀η ∈ Hs(Γ).

Equivalent Formulation: We choose ∥(I −∆Γ)
s/2.∥L2(Γ) as norm on Hs(Γ), s < s∗.

Find ψ ∈ Hs(Γ), the weak solution of

(I −∆Γ)
sψ = ℓ ∈ H−s(Γ), where (I −∆Γ)

sψ(x) :=

∞∑
i=1

λs
i (ψ, bi)L2(Γ)bi(x).

Balakrishnan Representation (0 < s < 1):

ψ =
sin(πs)

π

∫ ∞

0

t−s(tI + (I −∆Γ))
−1ℓ dt =

sin(πs)

π

∫ ∞

−∞
e(1−s)y(eyI + (I −∆Γ))

−1ℓ dy.

For s > 1, iterate (I −∆Γ)
s = (I −∆Γ)

s−1(I −∆Γ) for 1 < s < 2, ...
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Finite Element on Surfaces for Fractional Diffusion Problems

Subdivision: Th of Ω assumed to be Lipschitz and polygonal

Finite Element Spaces: Vh := V(Th) space of continuous pw linear functions, Th = Vh|Γ space of
continuous pw linear functions (on Γ).

Discrete Harmonic Extension: Eh : Th → Vh is defined for wh ∈ Th by∫
Ω

∇Ehwh · ∇vh = 0, ∀vh ∈ Vh ∩H1
0 (Ω); Ehwh|Γ = wh.

RHS approximation: ℓh(vh) := l(Ehvh).

Galerkin: ψh ∈ Th is given by

ψh =
sin(πs)

π

∫ ∞

−∞
e(1−s)ywh(y) dy,

where wh(y) ∈ Th approximates (eyI + (I −∆Γ))
−1ℓ and is given by

(1 + ey)

∫
Γ

wh(y)vh +

∫
Γ

∇Γwh(y) · ∇Γvh = ℓh(vh), ∀vh ∈ Th.

Sinc Quadrature: Given N , set k ≈ ⌈1/
√
N⌉ and yj = jk, j = −N, ..., N,

ψN
h :=

sin(πs)

π
k

N∑
j=−N

e(1−s)yjwh(yj), φN
h := Ehψ

N
h .
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Error Estimates - Riesz Representersb

PDE Regularity Propertya: Let t∗ > 0 be the largest number so that for 0 ≤ t ≤ t∗ we have

(I −∆Γ)
−1 : H−1+t(Γ) → H1+t(Γ)

is an isomorphism and

E : H
1
2
+t(Γ) → H1+t(Ω)

is bounded.

Approximate Riesz Representers: We have that φ = Eψ and φN
h := Ehψ

N
h satisfy

∥φ− φN
h ∥H1(Ω) ≲ (hβ + e−π2

√
N )∥l∥H1(Ω)# ,

where β := min(2s− 1, t∗ + 1
2
, 2t∗)− > 0 is “optimal” for FEM on quasi-uniform subdivisions.

a [Grisvard (2011)] and [Buffa, Costabel, Schwab (2002)]
b [B., Guignard and Lee (2024)] based on [B. and Lee (2022)] and [B. and Pasciak (2015)]
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Error Estimates - Optimal Recovery

Set ûN
h :=

∑m
j=1 Ûjφ

N
j,h where U = (Û1, ..., Ûm) satisfies ĜU = w, and Ĝij = li(φ

N
j,h). There exists

C (depending on Ω, s, and r) such that

sup
u∈Kw

∥u− ûN
h ∥H1(Ω) ≤ R(Kw)H1(Ω) + C(hβ + e−π2

√
N ),

ûN
h approximate the Chebysev center

Near optimal Recovery [B. and Guignard (2024)]

sup
u∈Kw

∥u− ûN
h ∥H1(Ω) ≤ C(h,N)R(Kw)H1(Ω)

provided h is sufficiently small and N is sufficiently large (depending on the measurements) and where
C(h,N) → 1+ as h→ 0+ and N → ∞.
Apply approximation estimate from [Binev, B., Cohen, Dahmen, DeVore, Petrova (2024)].

In particular for the targeted solution to the PDE ũ

∥ũ− ûN
h ∥H1(Ω) ≤ C(h,N)R(Kw)H1(Ω)
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What about pointwise measurements?a

Defined on the Model Class: l(v) = v(x), x ∈ Ω, is a linear functional on Hs provided Hs ⊂ C0(Ω),
i.e.,

s > (d− 1)/2 =⇒ additional restriction when d = 3

The algorithm requires:
∥φ− φ̂h∥H1(Ω) + ∥φ− φ̂h∥L∞(Ω) ≤ ε.

Finite Element Error when d = 2 and s = 1:

∥φ− φ̂h∥L∞(Ω) ≲ hmin( 1
2
,2t∗)

and 0 < t∗ ≤ 1 (elliptic regularity on Γ and continuity of extension operator)

a [Binev, B., Cohen, Dahmen, DeVore, Petrova (2024)]
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Pointwise measurement located inside Ωa

Advantage: We avoid the requirement Hs ⊂ C0(Ω) since the functions in Hs are harmonic inside Ω.

No additional requirement on s when d = 3.

Finite Element Error when d = 2 and s = 1:

∥φ− φ̂h∥L∞(Ω) ≲ hmin( 3
2
,t∗)+min( 5

2
,t∗)

where 0 < t∗ ≤ 1 (elliptic regularity on Γ and continuity of extension operator).

Improved rate

Tools: Local pointwise estimates based on the distance to the boundary.

Drawback: The constant in the error estimate blows up as d(x,Γ) → 0.

a [B., Demlow, Siktar (soon)]
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Setting

System of Equations: The velocity u : Ω → Rd and the pressure p : Ω → R are related via the system
of equations

−∆u+∇p = 0 and div u = 0 in Ω.

Ambient space:
X := H1(Ω)d × L2(Ω), ∥v, q∥2X := ∥v∥2H1(Ω)d + ∥p∥2L2(Ω).

Model class:

K :=

{
(v, p) ∈ H1(Ω)d × L2(Ω) : ∥u∥Hs(Γ)d ≤ 1,

∫
Ω

p = 0

}
.

Measurements: li(u, p) in general, for the numerical illustration we consider measurements on ui or p
separately.
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Optimal Recovery for Stokesb

Chebyshev Radius: Depends on the approximation of the couple velocity-pressure in an intricate way.

sup
(u,p)∈Kω

∥u− û, p− p̂∥X = R(Kω)X , (û, p̂) Chebyshev center.

Optimal recovery algorithm: Same as for the Poisson problem but with the harmonic extension
replaced by the“Stokes” extension.

Quantity of interest: We consider the drag on γ ⊂ Γ with normal ν

Q(v, q) :=

∫
γ

eT
1

(
∇v +∇vT − qI

)
ν.

Following a, its value Q(û, p̂) at Chebyschev center is its optimal recovery

sup
(u,p)∈Kω

|Q(û, p̂)−Q(u, p)| = inf
α∈R

sup
(u,p)∈Kω

|α−Q(u, p)|

a [Foucart and Hengartner (2025)]
b [B. and Guignard (in progress)]

OR for PDE - The Boundary Conditions Escape Plan Andrea Bonito



Comments on the mean value condition - in progress

Model class: Consists of pressures with
∫
Ω
p = 0

General pressure: The targeted pressure may not have vanishing mean value
=⇒ the measurements may not correspond to a pressure with vanishing mean value;

Optimal Recovery: Depend on the pressure recovery (average) in an even more intricate way.

Questions:

Is it possible to construct a practical algorithm to recover the mean value of the targeted pressure
from the measurements? Ok when li(u, p) = li(p) = p(xi)

a.

Is it possible to incorporate
∫
Ω
p = C (unknown C) directly in the recovery algorithm?

a [Foucart, Hielsberg, Mullendore, and Petrova (2019)]
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Setup I

Domain: Square domain Ω = (0, 1)2;

Functions to Recover:

u =

(
ex cos(y)

−ex sin(y) + 2x2

)
, p(x, y) = 2(2y − 1), s = 1

Measurements:

lj(v) =
1√
2πr2

∫
Ω

exp

(
−|x− zj |2

2r2

)
v(x)dx

with r = 0.1 and uniformly distributed zj ∈ Ω, j = 1, 2, . . . ,m.

Discretization Parameters: h sufficiently small.
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Preliminary results - Square domain

u1 u2 p

Exact

Recovery

(mu1 ,mu2 , p) = (0, 0, 36), ∥u− û∥H1(Ω)2 = 3.1281, ∥p− p̂∥L2(Ω) = 0.0848.
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Preliminary results - Square domain

u1 u2 p

Exact

Recovery

(mu1 ,mu2 , p) = (36, 0, 0), ∥u− û∥H1(Ω)2 = 1.5936, ∥p− p̂∥L2(Ω) = 0.8731.
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Preliminary results - Square domain

u1 u2 p

Exact

Recovery

(mu1 ,mu2 , p) = (36, 36, 0), ∥u− û∥H1(Ω)2 = 0.2865, ∥p− p̂∥L2(Ω) = 0.2381.
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Preliminary results - Square domain

u1 u2 p

Exact

Recovery

(mu1 ,mu2 , p) = (36, 36, 36), ∥u− û∥H1(Ω)2 = 0.2851, ∥p− p̂∥L2(Ω) = 0.2337.
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Preliminary results - Square domain

Velocity recovery error ∥u− û∥H1(Ω)2 :

mu

mp 0 1 4 9 16 25 36 49 64

0 – 3.274 3.166 3.138 3.132 3.128 3.128 3.129 3.129
1 3.181 3.181 2.814 2.780 2.777 2.773 2.774 2.774 2.775
4 1.773 1.766 1.621 1.025 0.821 0.729 0.729 0.735 0.737
9 1.050 1.038 0.943 0.894 0.708 0.513 0.420 0.386 0.385
16 0.632 0.629 0.617 0.552 0.496 0.476 0.325 0.271 0.272
25 0.412 0.410 0.398 0.406 0.402 0.338 0.308 0.248 0.228
36 0.287 0.286 0.287 0.283 0.278 0.299 0.285 0.228 0.218
49 0.238 0.237 0.237 0.237 0.244 0.261 0.233 0.227 0.214
64 0.203 0.202 0.197 0.189 0.206 0.181 0.220 0.216 0.209

∥u∥H1(Ω)2 = 3.2739
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Preliminary results - Square domain

Pressure recovery error ∥p− p̂∥L2(Ω):

mu

mp 0 1 4 9 16 25 36 49 64

0 – 1.155 0.623 0.287 0.277 0.128 0.085 0.050 0.046
1 2.485 2.485 0.662 0.308 0.279 0.129 0.085 0.050 0.046
4 1.425 1.422 1.229 0.799 0.497 0.242 0.143 0.083 0.072
9 0.925 0.901 0.703 0.658 0.494 0.346 0.207 0.118 0.100
16 0.507 0.499 0.485 0.388 0.398 0.365 0.243 0.164 0.134
25 0.336 0.332 0.319 0.327 0.312 0.277 0.250 0.178 0.152
36 0.238 0.237 0.238 0.235 0.233 0.247 0.234 0.173 0.167
49 0.196 0.195 0.194 0.196 0.199 0.215 0.194 0.187 0.169
64 0.165 0.163 0.165 0.148 0.156 0.151 0.186 0.182 0.169

∥p∥L2(Ω) = 1.1547
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Preliminary results - Square domain

Total recovery error
(
∥u− û∥2H1(Ω)2 + ∥p− p̂∥2L2(Ω)

)1/2

:

mu

mp 0 1 4 9 16 25 36 49 64

0 – 3.472 3.227 3.151 3.145 3.131 3.129 3.129 3.129
1 4.037 4.037 2.890 2.797 2.791 2.776 2.775 2.775 2.775
4 2.275 2.267 2.035 1.299 0.960 0.768 0.743 0.740 0.740
9 1.400 1.375 1.176 1.110 0.863 0.619 0.468 0.404 0.398
16 0.811 0.803 0.784 0.675 0.636 0.600 0.406 0.317 0.303
25 0.531 0.528 0.510 0.521 0.509 0.437 0.397 0.306 0.274
36 0.373 0.372 0.372 0.367 0.363 0.388 0.369 0.286 0.274
49 0.308 0.307 0.306 0.307 0.315 0.338 0.303 0.294 0.273
64 0.262 0.260 0.257 0.240 0.258 0.236 0.288 0.283 0.268

(
∥u∥2H1(Ω)2 + ∥p∥2L2(Ω)

)1/2

= 3.4716
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Setup II - Airfoil - Preliminary results

velocity (streamlines) pressure (isocontours)

Reference solution boundary conditions:
u = 0 on the airfoil, (∇uT +∇u− pI)n = 0 on the outflow, u = (1, 0)T elsewhere

Missing information:
unknown BC on the airfoil and the outflow
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Setup II - Airfoil - Preliminary results

Velocity recovery error ∥u− û∥H1(Ω)2 :

mu

mp 0 1 4 9

(0,0) - 1.0832 0.6862 0.1147
(1,1) 3.5855 0.2781 0.6488 0.0562
(4,4) 0.0906 0.0919 0.0793 0.0119
(9,9) 0.0140 0.0139 0.0127 0.0068

Pressure recovery error ∥p− p̂∥L2(Ω):

mu

mp 0 1 4 9

(0,0) - 2.1291 1.24339 0.0830
(1,1) 8.0994 0.5325 1.1970 0.0556
(4,4) 0.1608 0.1611 0.1389 0.0157
(9,9) 0.0168 0.0166 0.0149 0.0082
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Setup II - Airfoil - Preliminary results

Drag coefficient recovery error (exact = 12.553):

mu

mp 0 1 4 9

(0,0) - 3.3142 2.0591 0.1117
(1,1) 12.567 0.7148 1.9366 0.0540
(4,4) 0.2203 0.2080 0.1937 0.0101
(9,9) 0.0155 0.0149 0.0124 0.0038
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Conclusions

Missing information: Alleviated by measurements;

Hilbertian and Unit Ball Setting: Minimal norm property;

Key step: Approximation of the Reisz representers satisfying fractional diffusion problems;

Practical Near Optimal Algorithm: Approximation of the Chebyshev center; need to know s.

Not discussed: Implementation via saddle point, effect of thresholding in Moore-Penrose, effect of s.

Open question: Optimal measurements.

References:

[Binev, B., Cohen, Dahmen, DeVore, Petrova (original algorithm)];
[B. and Guignard (Practical algorithm for fractional s and Stokes)];
[B., Demlow, and Siktar (interior measurements)].

Acknowledgments: NSF Grants DMS 2110811 - DMS 2409807 and deal.ii.
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Thanks for your attention and Joyeux anniversaire Albert!
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